
OCTOBER 1995 Delphi INFORMANT ▲ 1

ON THE COVER

8 Questions and Answers — C. Rand McKinney
Delphi programmers, riddle me this: What is a language
that is not a true language? Can you speak in the tongue
of tables? To receive the answers to these, and other
questions about programming database applications in
Delphi, simply turn to Mr McKinney’s introduction to SQL.

15 Tables Under Construction — Cary Jensen, Ph.D.
Database developers know there must be more to using
tables in an application than just dropping the Table
component onto a form. This month, Dr Jensen takes a
close-up look at the Table component to reveal what’s
underneath. He’ll explain how to use the CreateTable
method and the FieldDefs property to create tables at run-time.

20 Database Apps: Part I — Antony Mosely
If that article on SQL may cause you to wrinkle a brow or
two, and the one on TTable looks a bit difficult to swallow,
don’t worry — you’ll find some consolation with Part I of
this series. Novices, gather ‘round. Mr Mosely tells the tale
of a hardy database application created by the marriage of
the Database Desktop and the Application Expert.

FEATURES

25 Informant Spotlight — Richard Wagner
ETA: 08/24/95 12:01:01 AM, over.
Redmond, we have delivery,
over... Although Windows 95 was the software star as
summer ended, the winter solstice is coming with Delphi32
on its heels. Now in the spotlight, Mr Wagner points his staff
to the North and explains Borland’s imminent, ultimate
developer’s tool, bit by bit.

31 OP Basics — Charles Calvert
The strings trilogy is complete. In this final installment of his
series, Mr Calvert returns to the StripFirstWord function,
explains how to save space when declaring strings, and
wraps things up with an enlightening talk about text files.
When all is said, and all is done, you’ll learn that you can
always return to the code.

October 1995 - Volume 1, Number 6

Cover Art By: Michael Tanamachi

36 At Your Fingertips — David Rippy
Autumn is here, and we have a ripe harvest of Object Pascal
tips. Mr Rippy gives us the low down on making J act
as if it were F, sends your Delphi .EXE file to a weight
reduction clinic, and suppresses uppity dialog boxes with
fsStayOnTop.

38 Viewpoint — Vince Kellen
Philos is the love of man, agape is the love of God, and
erros is the love of sex. So what is it when someone adores
Delphi? From a programmer’s standpoint, Mr Kellen
attempts to answer the question on the minds of many:
Why do developers love working in Delphi?

41 Sights and Sounds — Kenn Nesbitt
What’s the recipe for see-through images when using
Delphi16 in Windows 95? Use one part TImage, season its
Visible property until False, and add a procedure to
complete the brew. In this month’s Sights and Sounds,
Mr Nesbitt walks into the Win95 kitchen to whip up a
transparent background for your Delphi controls.

REVIEWS
43 Component Create — Product review by Douglas Horn
46 [re]Structure — Product review by Bill Todd
48 Delphi Starter Kit — Book review by Tim Feldman

DEPARTMENTS
2 Editorial
3 Delphi Tools
6 Newsline

DB Under Construction

Getting Started with
Delphi Databases

Symposium

“It was on a visit to Delphi, as he said, that he had left our land; and he came
home no more after he had once set forth.”

— Sophocles, Oedipus the King
O r to paraphrase “Once you do Delphi, you can never go back.” Which, oddly, reminds me of one
of the early letters-to-the-editor I received regarding the Premier issue. And since I can’t find the
letter, I’ll paraphrase again (and please pardon me for referring to the writer of the letter as “the

reader”). The reader was positive for the most part (i.e. he liked the magazine), but did take umbrage at
what he characterized as “Borland cheerleading,” saying that it “cheapened the magazine.”
Despite the fact that the letter did not
live on in our files, the comments have
lived on in my memory. I completely
agree with the sentiment, and never
want to be legitimately accused of
“cheerleading” for Borland (or any
other vendor for that matter). The
reader didn’t specify what got his goat,
but my guess is that he was referring to
our coverage of Delphi’s debut at
Software Development 95 in San
Francisco. The news item described
how people literally ran to the Borland
booth and quoted some Borland
employees’ surprised reactions to the
general melee/party atmosphere. It
probably sounded like marketing hype,
but there wasn’t an ounce of exaggera-
tion in the account. I’ve been to
enough of these conferences to have
some perspective, and believe me, the
news was accurate. If anything, the
piece failed to convey the genuine
excitement with which Delphi was met
at that event. It was a good day for
Delphi and Borland, and we were just
reporting the news. Honest.

There was a different type of excitement
at the 6th Annual Borland Developers
Conference, but it too was generated by
Delphi. Different in that it wasn’t the
frenzy of SD 95; Delphi was then an
essentially unknown quantity. The
OCTOBER 1995
mood at the BDC was more studied —
most of the attendees had been working
with Delphi for some months. Instead,
the feeling was a sort of thrilled satisfac-
tion. Most developers (and I include
myself) were, and are, simply delighted
to be working with Delphi and involved
with the product at such an early stage
of its life cycle.

Which brings me to Delphi32. Yup,
good as the Windows version is (let’s
call it Delphi16), the 32-bit version
for Windows 95 is better. It’s even
faster, has many more features, and can
turn your Delphi16 apps into their 32-
bit equivalents with a simple compile.

But something’s wrong — this doesn’t
feel right. We haven’t had a decent
opportunity to whine and complain
about Delphi16, and a newer shinier
model is already here. I can’t think of
another instance when a new version of
the product came out before the con-
sumers started clamoring for the next
rev. Where’s the fun in that?

Like Athena bursting full grown from
Zeus’ head, Delphi16 dazzled us with
its leapfrog technology that blends the
best visual 4GL tools with a cutting-
edge compiler. Now, the Delphi R&D
team stands prepared to repeat the
trick for Windows 95. Thrilled as we
may have been, by the end of the con-
ference we were all taking it for grant-
ed that most Delphi sessions would
feature Delphi32. And not just for
quick peeks on well-planned excur-
sions that avoided known weak spots
in the software. Some of the presen-
ters went on full-blown expeditions
into the new 32-bit environment. And
I never saw it crash.

And yes I’m a little red faced about the
September “Component” issue. Well,
not the whole issue, but a stupid error
I made in arranging the articles. For
some reason, I had locked onto the
idea that Gary Entsminger’s article was
a “cover story.” The only problem, of
course, is that Gary’s article doesn’t
describe a component. Now, as I write
this in early September (before I
receive the first “What the hell?” let-
ter), please allow me to apologize for
misplacing the article. It’s a great arti-
cle, but like the letter from “the read-
er”, it was misfiled.

— Jerry Coffey, Editor-in-Chief
CIS: 70304,3633
Delphi INFORMANT ▲ 2

OCTOBER 1995

Delphi
T O O L S

New Products
and Solutions

InfoPower Upgrade

Woll2Woll Software has released an
upgrade to InfoPower, a library of

data-aware Delphi VCL components.
In version 1.1, InfoPower enhanced

several Delphi components including
DataSource, Table, Query, DBGrid,
and DBLookupCombo. In addition,

InfoPower features a Table Index
Selection combo box, Incremental
Search combo box, Incremental

Search dialog box, a Lookup dialog
box, and more.

Free demonstration and trial ver-
sions are available in the Informant
CompuServe forum in Library 14
(Filenames INFODEMO.ZIP and

INFOTRI.ZIP).
For more information, contact

Woll2Woll at (800) 965-2965;
or e-mail

76207.2541@compuserve.com.
DFL Software Releases Light Lib Images VCL for Delphi

DFL Software of Toronto,

ON has released Light Lib
Images VCL for Delphi, a
native professional imaging
VCL. It enables Delphi pro-
grammers to add document
and image management capa-
bilities to their applications.

Light Lib Images is the first
imaging library to support the
PNG format (public domain
replacement for GIF), and
support for this format is
included in the Delphi VCL.

Light Lib Images supports all
Windows printers and video
resolutions, and features indus-
try leading TWAIN scanner
support. Scanning, displaying,
saving, retrieving, printing,
zooming, rotating, flipping,
scaling, converting, gray-scal-
ing, and dithering are fully
supported for .BMP, .PCX,
.TIF, .GIF, .JPG, and .PNG
file formats. It also supports
Huffman, RLE, LZW, CCITT
1D/Group 3 and 4 fax, and
JPEG compression systems.

Price: US$149

Contact: DFL Software Inc., 1712
Avenue Road, Box 54616, Toronto, ON,
M5M 4N5, Canada
Phone: (416) 789-2223

Fax: (416) 789-0204

BBS: (416) 784-9712

E-Mail: CIS: 74723,3321
Borland and Brainstorm Technologies Ship Delphi/Link for Lotus Notes

At its Sixth Annual

Developers Conference,
Borland International Inc.
announced it has begun ship-
ping Delphi/Link for Lotus
Notes, a tool developed by
Brainstorm Technologies.

Delphi/Link is a set of cus-
tomized native links to Lotus
Notes for Delphi and Delphi
Client/Server. It allows cus-
tomers to use Delphi’s object-
oriented architecture while
taking advantage of Notes
replication for wide-area dis-
tribution of data. This tool
also gives BC++ 4.5 and
Visual dBASE developers the
same capabilities.

According to Brainstorm
Technologies, this product
supports the move to
client/server computing, and
uses existing Borland tools
and databases while leverag-
ing the Notes installed base.

Delphi/Link gives you the
ability create graphical front-
ends to Notes databases,
develop Notes client/server
mail-enabled applications,
integrate Notes data and
applications with all major
relational and SQL databases,
and create, delete, read, and
update Notes documents. It
supports full-text searches on
Notes documents, views, and
databases. In addition,
Delphi/Link allows develop-
ers to access, display, and
manipulate Notes rich-text
information, including file
attachments, doc-links, and
embedded/linked OLE
objects.

Delphi/Link is one of sever-
al products marketed
through Borland’s newly
formed Companion Product
Group designed to provide
additional products that
extend across Borland’s core
development tools.

Price: US$399. All prices apply only in
the US and Canada.

Contact: Borland International, 100
Borland Way, Scotts Valley, CA 95066-3249

Phone: (800) 932-9994

Web Site: http//:www.borland.com
Delphi INFORMANT ▲ 3

OCTOBER 1995

Delphi
T O O L S

New Products
and Solutions

Delphi Training in Canada

As a standing Borland Connection
Training Member, InfoCan

Management Consultants Group
(Canada) Inc. is the first in Canada
to offer Delphi and dBASE hands-on

training and consulting services
nationwide. Both the three-day
Introductory (US$1200) and the

two-day Advanced (US$850) classes
are being offered monthly in Victoria
BC, Vancouver BC, Edmonton AB,
Calgary AB, Montreal PQ, Quebec
City PQ, Ottawa ON, Toronto ON,
and Moncton NB. (Classes conduct-

ed in French are available in
Montreal and Quebec.)

On-site training is also available
upon request. InfoCan Management
offers a wide variety of consultation

services such as mentoring, pro-
gramming, user interface design,

system design, and project manage-
ment. For more information or to

register, contact InfoCan
Management at (800) 715-5355;
fax (604) 432-1799; or e-mail at
76307.720@compuserve.com.
Add Graphics to Delphi with ProEssentials

Gigasoft, Inc. of Keller, TX

has released ProEssentials, a set
of three interactive controls — a
Graph, Scientific Graph, and
Pie Chart — for information-
system, scientific, quality con-
trol, financial, and data-acquisi-
tion implementations.

ProEssentials is designed for
adding a complete graphing
sub-system via a 200-plus
property interface. It features
image construction with no
overlapping labels independent
of size, shape, style, or amount
of data being graphed. Images
can be prepared in memory so
there are no flashing redraws.

ProEssentials has built-in
zooming capabilities. After
zooming, the user can horizon-
tally pan to view the remaining
data. The ProEssentials Graph
object has an integrated table
synchronized with the graph.
As the user zooms or pans, the
table’s data moves to coincide
with the graph.

Metafiles can be exported to
the Clipboard, file, and printer
via a built-in print dialog box,
bitmaps can be exported to
the Clipboard or file, textual
data can be exported to the
Clipboard or file via a built-in
text export dialog box, and
OLE representations can be
exported to the Clipboard.

ProEssentials’ built-in interface
also provides an automatic and
comprehensive hot-spot/drill-
down mechanism. Possible hot-
spots include subset and point
labels, data points, and graph
and table coordinate feedback.

ProEssentials ships with
example projects for Delphi,
Visual Basic, Visual C++, and
FoxPro. Example code is also
supplied for Clarion, Gupta,
and PowerBuilder.

Price: US$249

Contact: Gigasoft, Inc., 696 Lantana
Dr., Keller, TX 76248

Phone: (817) 431-8470

Fax: (817) 431-9860

E-Mail: CIS: 71561,315
ProtoView Visual Help Builder for Delphi

ProtoView Development

Corp. of Cranbury, NJ has
released ProtoView Visual
Help Builder Version 2.11 for
Delphi, a RAD help develop-
ment environment.

Unlike a help authoring sys-
tem, ProtoView Visual Help
Builder captures all forms, con-
trols, and embedded menu
items of a specified Delphi
application. It then creates the
corresponding topics, links, and
search keywords for an on-line
help system. The user is left
with the sole task of text entry.
To enable text entry,

ProtoView Visual Help Builder
embeds itself within Microsoft
Word 2.0 or 6.0. In addition,
ProtoView Visual Help Builder
contains a help authoring sys-
tem that supports multimedia
and visual logic design features.

ProtoView Help Builder also
features the Help Eyes Tech-
nology. This feature allows the
user to supply a help system to
an existing application, even if
the application source code is
not available. The user can also
build on-line help for any com-
mercial application, including
context-sensitive help for appli-
cations such as Microsoft
Office, Lotus Notes, or any
other Windows application.

Help Builder works with
Delphi, Visual Basic, C/C++,
Pascal, PowerBuilder, and
SQL Windows. It is compati-
ble with Intersolv’s PVCS
Version Manager.

Price: US$395

Contact: ProtoView Development Corp.,
2540 Route 130, Cranbury, NJ 08512

Phone: (800) 231-8588, or
(609) 655-5000

Fax: (609) 655-5353
Delphi INFORMANT ▲ 4

OCTOBER 1995

Delphi
T O O L S

New Products
and Solutions

Starfish Ships Sidekick 95

Starfish
Software has

released Sidekick
95. This 32-bit
version features

an expense report
view, a world-
wide clock, a
rich-text docu-

ment editor, and
more.

Sidekick 95 uses the TAPI (telephony
applications standard) support avail-
able in Windows 95, and features a

contact management and cardfile link
with the telephone dialer. According
to Starfish, Sidekick 95 was built for
Windows 95 and Windows NT ver-
sions 3.51 and later (not just ported

from Windows 3.1).
Sidekick 95 is available for download
from the Internet Shopping Network

(ISN), ZiffNet, CompuServe, and soft-
ware.net. It sells for US$49.95 (prices
may vary). An upgrade directly from

Starfish Software runs US$39.95 (plus
US$6 shipping and handling). To order

call Starfish at 1-800-765-7839.
PowerTCP for Delphi Adds SMTP and POP3

Dart Communications of

Cazenovia, NY has added sup-
port for the Post Office Protocol
Version 3 (POP3) and Simple
Mail Transfer Protocol (SMTP)
to their PowerTCP Standard
Toolkit for Delphi v1.3. The
first commercially available
TCP/IP libraries for the Delphi
environment, PowerTCP now
features UUENCODE and
MIME encoding/decoding.
This allows developers to send
and retrieve “attached docu-
ments” with minimal applica-
tion programming.

The PowerTCP Standard
Toolkit for Delphi includes
Delphi components that sup-
port TCP (client/server), FTP,
POP3, TELNET, SMTP, and a
VT220 terminal emulator com-
ponent. The PowerTCP
Specialty Toolkit for Delphi
includes Delphi components
supporting UDP (client/server),
TFTP (client/server), and
SNMP. Each toolkit ships with
sample applications with source
code for each of the included
components. The toolkits also
include sample applications
with source code for other
TCP/IP protocols such as
RLOGIN, REXEC, and RSH.

Price: The Standard Toolkit (TCP, TEL-
NET, FTP, SMTP, POP3 and VT220 com-
ponents) and Specialty Toolkit (UDP,
TFTP and SNMP) are priced at US$598
each, including documentation. OEM and
end-user run-time licenses are available.
Contact: Dart Communications 61 Albany
Street, PO Box 618, Cazenovia, NY 13035

Phone: (315) 655-1024

Fax: (315) 655-1025

E-mail: info@dart.com

Web Site: http://www.dart.com
Diamond Head Software Launches ImageBASIC for Delphi

Diamond Head Software of

Richardson, TX has launched
Image BASIC for Delphi, an
integrated suite of VBXes for
creating production-level doc-
ument imaging applications.
With ImageBASIC for
Delphi, end-users and pro-
fessional developers can cre-
ate production-level, cus-
tomized document imaging
applications. Because of
ImageBASIC’s underlying
component architecture,
developers can incorporate
the imaging functionality
into new or existing business
applications.

The ImageBASIC docu-
ment imaging components
support a wide choice of
OCR-based automatic image
indexing options that further
speed development time.
These components can also
be integrated with Lotus
Notes, ActionWorkflow, and
all leading business applica-
tions.
ImageBASIC’s core system
includes scan, display, and
print functionality, and sup-
ports leading imaging engine
vendors.

Delphi developers can also
integrate additional compo-
nents to support forms pro-
cessing, color scanning and
display, and image annotation.

Price: Standard edition US$1,750; addi-
tional modules begin at US$295 with
additional per-seat licensing fees. Bundled
systems are also available.

Contact: Diamond Head Software, Inc.,
1217 Digital Drive, Suite 125,
Richardson, TX 75081

Phone: (214) 479-9205

Fax: (214) 479-0219
Delphi INFORMANT ▲ 5

OCTOBER 1995

Borland Announces
CodeGuard for Borland

C++ 4.5
Borland International Inc. has
announced CodeGuard for

Borland C++ 4.5, a debugging
tool that allows software develop-
ers to automatically locate and

diagnose memory bugs in 16-bit
Windows applications.

CodeGuard is designed to find
bugs such as memory leaks,

invalid memory references, mem-
ory overruns, and uninitialized
data access. Unlike traditional

interactive debuggers,
CodeGuard automatically catch-

es errors most likely to cause
data corruption as they occur.

With CodeGuard, developers can
work directly within the Borland
C++ integrated development

environment, providing a single
environment to detect, diagnose,

investigate, and fix bugs.

CodeGuard for Borland C++ 4.5
is priced at US$149.95, with a

special introductory price of
US$99.95 available until Nov. 30,
1995. The product is shipped on
CD-ROM; disks are available for

an additional charge of US$19.95.
All prices, including special offers,
apply only in the US and Canada.
For more information, call Borland

at (800) 233-2444.

News
L I N E

Oc tobe r 1995
Delphi32 Previewed at Sixth Annual Borland Conference

San Diego, CA — Borland

used their Sixth Annual
Borland Developers Conference
(August 6-9) to reveal the next
version of Delphi. Called
Delphi32, the new version is
designed to operate on
Windows 95. [Richard Wagner
takes a Delphi Informant “First
Look” at Delphi32 beginning
on page 25.]

Delphi32 was previewed in
two standing-room-only
“Product Announcement” ses-
sions and was met with an
extremely enthusiastic
response. The announcements
themselves were presented by:
Borland’s Director of Product
Marketing, Gillian Webster;
Delphi Research and
Development Manager, Gary
Whizin; Delphi Product
Manager, Zack Urlocker; and
Delphi Chief Architect,
Anders Hejlsberg.
Webster kicked things off by

chronicling the phenomenal
growth of Delphi third-party
products. These products
include more than 40 books; 6
newsletters and magazines; a
“slew” of worldwide training
seminars; a community of con-
sultants; a large and rapidly-
growing number of on-line
groups; and many third-party
tools and libraries.

Whizin discussed the pri-
mary goals of the Delphi
product. These include: full
operating system support,
world-class code generation,
extending the Delphi environ-

ment to provide
all the tools and
information nec-
essary for devel-
opment, and
next-generation
database support
with a 32-bit
BDE, live
queries, new
SQL Monitor
utility, and Database Explorer.
Urlocker demonstrated the

new components that add
Win 95 support: PageControl,
TreeView, ProgressBar,
TrackBar, RichEdit,
TabControl, UpDown, etc.

Hejlsberg then demonstrated
the new compiler, stressing
that it is “completely back-
ward compatible”. Unless a
Delphi 1.0 program contains
in-line assembler, performs
16-bit math, or makes
Windows 3.1 API calls that
aren’t supported in the
Windows 95 API, it can be
simply recompiled in
Delphi32 to make it a 32-bit
Win 95 application.

Hejlsberg then moved on to
the Delphi32 optimizing
code generator, quipping
that there are three keys to
performance optimization on
the Intel platform: “registers,
registers, and registers”.
Among many register-related
performance enhancements,
the compiler performs life-
time analysis on local vari-
ables. If two local variables
don’t having overlapping
scope they can be assigned to
the same register.

Delphi32 also features new
data types: a String type that
can be up to 4GB in size; a
Variant data type that can
contain integer, Boolean, float,
string, and OLE object values;
and two wide character
(Unicode) types.

Hejlsberg finished the pre-
sentation with a demonstra-
tion of Delphi32’s ability to
create OLE automation con-
trollers and servers.
ICG Announces Delphi Informant on CD-ROM

Elk Grove, CA — Informant

Communications Group, Inc.
(ICG) has announced the com-
pany will release its second
magazine, Delphi Informant on
CD-ROM. Available in mid-
December 1995, Delphi
Informant Works: 1995 will
contain the text to all the arti-
cles appearing in 1995.

“We are very pleased to be able
to offer Delphi Informant on
CD-ROM” said Mitchell
Koulouris, Publisher of Paradox
Informant and Delphi Informant.
“The demand for Delphi
Informant has exceeded our sup-
ply of printed copies. With
Delphi Informant Works: 1995
we can make back issues that
have been sold out for months
available.”

Delphi Informant Works fea-
tures a new word index that
allows users to find all the arti-
cles with specific keyword ref-
erences or phrases.

The new CD-ROM will also
contain all code and support-
ing files for every article.
Delphi Informant Works will
also contain demonstration
versions of third-party tools
for Delphi; an electronic ver-
sion of Delphi Power Tools, a
catalog of third-party tools
and services available for
Delphi; and a CompuServe
starter kit with the latest ver-
sion of WinCim and a US$15
usage credit for new members
of the service.

Delphi Informant Works will
sell for US$39.95 plus US$5
shipping and handling. The
CD price is for a single-user
license. For international
customers the shipping
charge is US$15. Delphi
Informant Works will be
updated annually.

ICG is now taking orders for
Delphi Informant Works: 1995.
To purchase the CD, call toll-
free (800) 88-INFORM in the
US. Outside the US, dial
(916) 686-6610, or order by
fax at (916) 686-8497.
Delphi INFORMANT ▲ 6

OCTOBER 1995

News
L I N E

Oc tobe r 1995

Preferred Solutions’ Monthly
Delphi Component Contest
Preferred Solutions Ltd., a software

consulting company specializing in
object-oriented development of

cross-platform applications, is run-
ning a monthly Delphi Component

Contest to foster the development of
Delphi components.

Each month Preferred Solutions
invites Delphi application developers
to enter suggestions for the perfect
component. Entries are judged for

originality and desirability, and pub-
lished on the World Wide Web.
Many excellent and creative ideas

have already been submitted.
Whether you are an application or

component developer, you should try
your hand at winning a prize. You’ll

find all the details at:
http://www.topia.com.

Informant CompuServe
Forum Opens

Oracle® Sections
Informant Communications Group
has opened new Oracle message

and library sections on their
CompuServe forum.

In Oracle Development
(message section 13), members can
discuss Oracle Workgroup/2000®

issues. Also, Oracle Tools and
Utilities (library section 16) has been
added. This library is available for
you to upload your favorite utilities,

or view and download other
Oracle Workgroup/2000-related

items (i.e. code samples,
mini applications, etc.).

To visit the Informant CompuServe
forum, enter “GO ICGFORUM” at

any command prompt.
BDC 1996: Wetsel Keynote Sets New Tone for Borland

San Diego, CA — More than

2,000 people attended the
1995 Borland Developers
Conference. It was highlight-
ed by previews of the
Windows 95 versions of
Delphi and Paradox.

Another highlight was the
Opening Keynote address
delivered by Gary Wetsel,
CEO of Borland. In it, Wetsel
stated that he had taken over
a “financially challenged”
company, and that Borland
had made mistakes with its
pricing assumptions for
Paradox and dBASE.
Expectations were for approxi-
mately US$200 a unit.
Instead the price was closer to
US$100. According to Wetsel,
there were two main reasons
for the price difference: a long
term industry trend of drop-
ping software prices, and the
impact of software suites.

Wetsel’s view as an outsider
coming in was that Borland
had “good technology” but
their “cost model was not in
sync with revenues”. In fact, the
revenues were half of what was
expected. He analyzed the com-
pany and found it had loaded
cost structures stemming from
the Ashton-Tate takeover. He
also found that selling to two
markets — developers and end-
users — was expensive from a
marketing standpoint. Borland
needed to narrow its focus and
concentrate on one type of cus-
tomer — the developer.

Continuing with his bottom-
line analysis, Wetsel said
Borland has been moving away
from an entrepreneurial model
and rebuilding the company’s
infrastructure. This entailed
some “tough times” — laying
off approximately 650 employ-
ees and closing manufacturing
facilities in Scotts Valley, CA
and Dublin, Ireland. Borland
has also greatly reduced market-
ing expenses and closed many of
its international offices. The
effect, according to Wetsel, has
been to increase the gross mar-
gin to 85 percent (from some-
where in the low 70s). The
changes to the infrastructure are
expected to take nine months,
ending in October. Borland will
then reveal plans for the future
— plans currently being assem-
bled by their top 60 managers.
When asked “Did Delphi save

Borland?” Wetsel replied that
Delphi’s success has “gone a
long ways towards bridging the
gap” during Borland’s re-organi-
zation, but that Borland C++
was an important part of the
equation as well. He said that
BC++ has a 50 percent market
share in an extremely competi-
tive arena, and that “dBASE
and Paradox are also impor-
tant”. He also stated that
Borland’s strategy with
InterBase has been unclear and
the product was not very well
known. Now that InterBase is
bundled with Delphi, it’s their
“fastest growing product”.

Wetsel then introduced Paul
Gross, Borland’s Vice
President of Research and
Development. Gross began by
discussing Delphi, saying it
was developed by 10 people in
two and a half years and that
it has sold approximately
125,000 units [as of early
August]. He also stated that
Windows 95 is a “tremendous
opportunity” for Borland.
Continuing in the frank vein
of the entire presentation,
Gross then gave a demonstra-
tion of Delphi32 and shared
the results of benchmark tests
that show Delphi is dramati-
cally faster than Microsoft’s
Visual Basic and PowerSoft’s
PowerBuilder. In the Sieve
benchmark for example,
Delphi32 was 15 times faster
than Visual Basic and more
than 800 times faster than
PowerBuilder.

In closing, Wetsel said:
“Quite clearly, beyond a
shadow of a doubt —
Borland is back.”
Borland Launches Windows 95 Web Site

Scotts Valley, CA — Borland

International Inc. has
launched its Smooth Sailing
to Windows 95 World Wide
Web Site in conjunction with
Microsoft’s introduction of
Windows 95. The Smooth
Sailing to Windows 95 Web
Site offers developers a way
to learn about Borland’s
Windows 95 products and
how to smoothly migrate
applications to the new oper-
ating system.

Customers can access the
site either through the
Microsoft Windows 95
Launch site (http//:www.win-
dows.microsoft.com/launch9
5/), or Borland Online
(http: //www.borland.com),
Borland’s World Wide Web
Site.

In addition, customers vis-
iting the site can win a cruise
or other prizes including
Borland T-shirts.

Borland’s Windows 95 prod-
ucts are scheduled to ship in
the third and fourth quarters
of its fiscal year ending March
31, 1996.
Delphi INFORMANT ▲ 7

OCTOBER 1995

Questions and Answers
An Introduction to Structured Query Language in Delphi

On the Cover
Delphi / SQL / Object Pascal

By C. Rand McKinney
S tructured Query Language (SQL) is widely known as a powerful lan-
guage for creating and querying relational databases. Over the
years, SQL has gained acceptance as a standard interface to relation-

al database servers. All the major database server vendors, including
Oracle, Sybase, Informix, etc., support versions of SQL. Although each
server has a slightly different implementation, they all share a core of stan-
dard statements codified in standards such as ANSI SQL92.

Despite its name, SQL is:
• not a “structured” language, in the same sense as Pascal or other modern programming languages.
• not just for queries. SQL can be used for creating and modifying databases, as well as a multitude

of other more specialized functions.
• not a stand-alone language. SQL statements must be embedded within other programming

language code or applications to feature conditional logic (e.g. an if statement) or looping
(e.g. a while loop).
Nevertheless, SQL can provide relational database applications
with a great deal of power and portability, and is widely used for
client/server applications.

While SQL is a complex subject, it need not be intimidating to
the Delphi programmer. Delphi is both a powerful tool for
developing SQL applications, and an ideal environment for pro-
grammers who want to learn SQL. This article is an introduc-
tion to SQL and shows you how to use it in Delphi. This article
assumes you can build a basic database application with Delphi.

Delphi Client/Server enables you to build applications that access
remote SQL servers across a network using Borland’s SQL Links.
However, even the desktop edition of Delphi provides substantial
SQL capabilities with the Local InterBase Server (LIBS). LIBS is a
16-bit version of the Borland InterBase server. This unique feature
enables you to create stand-alone desktop SQL applications with-
out the need to access a remote server. Because LIBS comes with
Delphi, this article will focus on its use. All the standard SQL
syntax used will port (i.e. is applicable) to other SQL servers.
Delphi INFORMANT ▲ 8

Table The fundamental SQL database object that defines
the structure of a database. A table consists of
columns (sometimes called fields). Each item of
data in the table is known as a row (sometimes
called a record). Each column has a name, a data
type, and special constraints, including nullability
(whether the column is required to have data), ref-
erential integrity (restrictions based on data in
other tables), and check constraints (any general
restrictions on the value of the data). The Delphi
component TTable corresponds to a table.

View A virtual table, based on the definitions of
other tables.

Domain A global column definition that can be used in
defining tables; something like a user-defined
data type.

Stored procedure A self-contained program that can receive input
parameters from, and return values to, applica-
tions. The Delphi component TStoredProc corre-
sponds to a stored procedure.

Trigger Conceptually similar to a Delphi event, a self-
contained routine associated with a table or
view that automatically performs an action when
a row is inserted, updated, or deleted.

On The Cover
Why Use SQL?
Aside from a great buzzword to put on your resume, why
would you want to use SQL in a Delphi application? If you’ve
toyed with Delphi database applications, you know that TTable
is a key data access component. Building database applications
with TTable is relatively straightforward. Doesn’t TTable pro-
vide all the database functionality you would ever need?

While the TTable component is fine for many purposes, using
SQL with a TQuery enables you to:
• harness the power of database servers in client/server

applications.
• search for records based on values in non-indexed fields.
• perform heterogeneous joins. That is, queries that include

tables from different types of databases (e.g. a Sybase table
on a remote server and a local Paradox table).

• perform complex queries that are not possible with
TTable, including sub-selects and joins.
Index Used to improve the speed of data retrieval.
Identifies columns that can be used to retrieve a
unique row and sort rows. Slightly different than
the concept of an index in desktop databases
like Paradox and dBASE.

Generator A simple function that generates unique num-
bers (usually for use in an index).

Function A user-defined function.
Filter A BLOb filter.
Exception Unrelated to Delphi exceptions.

Figure 1: InterBase database objects (metadata).

Figure 2: The Windows Interactive SQL program (WISQL.EXE) that
ships with Delphi.
A SQL Overview
SQL can be divided into several distinct areas:

Data Definition Language (DDL): The statements that cre-
ate, change, and delete databases, tables, and other relational
objects (i.e. CREATE, ALTER, and DROP statements). You
typically use DDL at the beginning of a project to define the
database that the application will use. If the database already
exists, then you need not be concerned about DDL.

Data Manipulation Language (DML): The statements to
add, change, and delete data (i.e. INSERT, UPDATE, and
DELETE statements), and to perform queries (i.e. the
SELECT statement). These statements are the SQL work-
horses that applications use to perform their tasks.

SQL also provides syntax for advanced features such as
transaction control, granting access privileges, and execut-
ing stored procedures. These important features are often
lumped with DML, but are not part of the core of the lan-
guage. In general, Delphi applications will need to use
DML statements, since most applications must retrieve
and manipulate data and not define databases. For this rea-
son, this article will concentrate on DML statements;
defining databases is outside the scope of this article.

In SQL parlance, metadata are the data structures and pro-
cedural code that define a SQL database — so called
because they define the structure of the database, and are
therefore “data about the data” or meta-data. The metadata
are sometimes also referred to as database objects, but
should not be confused with Delphi objects.

When creating a database, you use DDL statements to
define the metadata. Figure 1 lists the different types of
objects that can be defined for an InterBase database
(other types of databases may have slightly different types
of objects).
OCTOBER 1995
Introducing Windows Interactive SQL
If you are new to SQL, you can become familiar with it by
using the Windows Interactive SQL program (WISQL.EXE)
shown in Figure 2. This interactive SQL tool ships with
Delphi, and enables you to enter SQL statements and then
interactively see the results. Primarily intended as a DDL tool
for creating and modifying InterBase databases, WISQL is
also an excellent tool for learning SQL. Its extensive on-line
help (file name WISQL.HLP) provides a complete reference
Delphi INFORMANT ▲ 9

On The Cover
to SQL statements. The InterBase documentation that comes
with Delphi also has a detailed SQL tutorial that uses
Windows ISQL.
Figure 3: The Database Connect dialog
box.
To start WISQL,
double-click on the
Windows ISQL icon
in the Delphi pro-
gram group. When
using WISQL, you
must first connect to
a database by select-
ing File | Connect to
Database. The
Database Connect
dialog box will be dis-
played (see Figure 3).
Connecting to Local
Figure 5: Detailed information about the EMPLOYEE table, the results
of the View Information dialog box selections made in Figure 4.
InterBase is easy. Just enter the location of a local database
(e.g. C:\IBLOCAL\EXAMPLES\EMPLOYEE.GDB) in the
Database edit box and click the OK button to connect.

To connect to databases on SQL servers, you are usually
required to supply a user name and password to provide securi-
ty. However, to connect to a local database (a LIBS database),
you don’t need to enter a password and user name and can
leave these fields blank. Note however, that if you enter any
user name, you are required to provide a password. Therefore,
make sure the User Name and Password edit boxes are blank
before selecting OK to connect to the sample database.

When WISQL is connected to a database, you’ll see the path
of the database file at the bottom of the window (again, see
Figure 2). Every action you perform in WISQL then affects
that database. Note that unlike desktop databases such as
Paradox and dBASE, all the tables in a SQL database are
contained in a single file. The EMPLOYEE.GDB file we’re
using as an example here, is the employee database. That is,
it contains all the data and metadata of the sample database.
There are no auxiliary files as for Paradox and dBASE.

WISQL’s interface is simple. At the top of the window
there is a small area for entering SQL statements, and
below there is larger area that displays the statements’
results. To type a statement in the SQL Statement area,
click the mouse in that area. To execute the statement,
click the Run button. To recall a previously entered state-
ment, click on the Previous button.

The pull-down menu items enable you to perform additional
actions, including: the ability to run SQL scripts created with
an editor, extract all the DDL statements to define the data-
base’s metadata, and view all the metadata in the database.
Viewing Metadata
Use the View menu to display metadata information. For
example, to see a list of tables in the database, choose View |
OCTOBER 1995
Metadata Information. In the View Metadata dialog box,
leave the Object Name edit box blank to display all the
names of objects of that type. If you want detailed informa-
tion on an object,
simply fill in the
name. For example, to
see information about
the EMPLOYEE
table, select Table
from the combo box
and enter EMPLOY-
EE in the Object
Name edit box, as
shown in Figure 4. Then click on OK. You’ll see the results in
the ISQL Output area (see Figure 5).

Figure 4: Selecting which metadata to
display using the View Information dialog
box.
The results list the name of each column in the table fol-
lowed by its data type, and in parenthesis the domain from
which it was derived (if any). A domain is like a user-
defined data type for columns. The table in Figure 6 shows
all the information provided. For example, the LAST-
NAME domain is defined as a VARCHAR(20), or up to
twenty characters long. Some columns also have check con-
straints. These are conditions that the data entered in the
column must meet. For example, JOB_GRADE must be an
integer between 0 and 6.

In general, SQL tables can have very rich structures with
many interconnecting conditions. Don’t be too concerned
about all the details right now. Just try to familiarize yourself
with the structure of a SQL table. Try displaying some of the
other tables in the database. If you’re feeling adventurous, try
displaying other objects such as domains or triggers.
Querying with the SELECT Statement
Now, you can start experimenting with SQL. A good place to
start is probably the most well-known and powerful SQL
statement: SELECT. SELECT is used to query a database,
Delphi INFORMANT ▲ 10

Figure 6: A detailed description of each of the columns (fields) in the
EMPLOYEE table.

Column SQL Description

EMP_NO (EMPNO) SMALLINT Not Null

FIRST_NAME (FIRSTNAME) VARCHAR(15) Not Null

LAST_NAME (LASTNAME) VARCHAR(20) Not Null

PHONE_EXT VARCHAR(4) Nullable

HIRE_DATE DATE Not Null DEFAULT 'NOW'

DEPT_NO (DEPTNO) CHAR(3) Not Null.
CHECK(VALUE = '000' OR

(VALUE > '0' AND VALUE <= '999') OR
VALUE IS NULL)

JOB_CODE (JOBCODE) VARCHAR(5) Not Null.
CHECK (VALUE > '99999')

JOB_GRADE (JOBGRADE) SMALLINT Not Null.
CHECK (VALUE BETWEEN 0 AND 6)

JOB_COUNTRY (COUNTRYNAME) VARCHAR(15) Not Null

SALARY (SALARY) NUMERIC(15, 2) Not Null
DEFAULT 0

On The Cover
that is, to retrieve data. In the SQL Statement area, type:

SELECT * FROM EMPLOYEE

The asterisk (*) indicates that we want all the columns in the
table. You’ll see a display of all the records (usually called rows in
SQL terminology) in the EMPLOYEE table. The output will
scroll off the top of the ISQL Output area. You can scroll the
output window up to see all the records retrieved by the query.

If you only want to retrieve some of the fields (or columns in
SQL terminology), just provide a list of the column names
instead of the asterisk. For example, to retrieve only the
columns for the employee name and employee numbers, use
the following statement:

SELECT LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE

The full syntax of the SELECT statement is complex, as you can
see if you look it up in the on-line help under SQL Statement
Reference. This complexity yields a great deal of power for
querying with SQL. The main features of the SELECT state-
ment can be summarized in the following syntax diagram:

SELECT [DISTINCT] columns
FROM tables
[WHERE search_condition]
[GROUP BY columns HAVING search_condition]
[ORDER BY sort_order]

In this syntax notation, keywords are capitalized, variables are
italicized, and optional clauses are enclosed in brackets.

Use the optional keyword DISTINCT to eliminate duplicate
rows in the query. The variable columns can be either an aster-
OCTOBER 1995
isk to retrieve all columns in the table, or a comma-delimited
list of columns and aggregate functions. Aggregate functions
include SUM, AVG, MIN, and MAX, that provide the total,
average, minimum, and maximum (respectively) of all the
rows retrieved. The special aggregate function COUNT
returns the number of rows retrieved. For example, a query
could select the average of employee salaries and the number
of employee with the following statement:

SELECT AVG(salary), COUNT(emp_no)
FROM EMPLOYEE

The variable tables is a comma-delimited list of tables that
can include joins between tables. Joins enable you to select
columns based on comparisons between values in different
tables. (A discussion of joins is beyond the scope of this arti-
cle. Joins are powerful and are useful for advanced querying.)

The WHERE clause and the HAVING clause include a
search_condition that can be any number of conditions linked
by the Boolean operators AND and OR. The conditions can
be any expression that equates to a Boolean value, including
comparisons between column values, constants, using the
standard arithmetic operators: equal to (=), greater than (>
), less than (<), greater than or equal to (>=), and less than
or equal to (<=).

For example, to display the employee records for all engi-
neers hired on or after the beginning of 1994, enter:

SELECT * FROM EMPLOYEE
WHERE JOB_CODE = "Eng" AND

HIRE_DATE >= "1-JAN-1994"

The sort_order is a list of column names, followed by either the key-
word ASCENDING or DESCENDING. For example, the query
could be displayed in ascending order of last names, and then by
employee number by appending this to the SELECT statement:

ORDER BY last_name ASCENDING,
emp_no ASCENDING
Using Other DML Statements
The SELECT statement is great for retrieving data from the
database tables, but how do you get the data into the tables?
There are three other basic DML statements that enable you
to add, modify, and delete data:
• INSERT adds a row (record) to a SQL table.
• UPDATE modifies existing rows.
• DELETE eliminates entire rows.

Figure 7 summarizes these DML statements. It is not as
easy to experiment with these statements using the
EMPLOYEE database because of the referential integrity
rules that are defined for the database. Referential integrity
is a weighty topic. In essence, it restricts changes to the
database according to rules defined by the database design-
er. For example, if you try to delete a department that has
employee information in it, you will get a “violation of for-
Delphi INFORMANT ▲ 11

On The Cover

SQL Statement Syntax Description Example

INSERT INTO table (col1, col2, ...)
VALUES (val1, val2, ...)

UPDATE table
SET column = value
WHERE condition

DELETE FROM table
WHERE condition

Inserts new rows
into a table.

Modifies values of
existing rows.

Removes rows
from a table.

INSERT INTO COUNTRY
(COUNTRY,CURRENCY)

VALUES
('Indonesia','Rupiah')

UPDATE COUNTRY
SET CURRENCY = 'Rp'
WHERE COUNTRY =
'Indonesia'

DELETE FROM COUNTRY
WHERE COUNTRY =
'Indonesia'

Figure 7 (Left): SQL Data Manipulation Language (DML) statements. Figure 8 (Right): Creating the sample application.
eign key constraint” message because the employee records
refer to the department record.

To see how these statements are used, look at the
INSERTS.SQL and UPDATES.SQL files located (by
default) in the IBLOCAL\EXAMPLES\TUTORIAL direc-
tory. These files are used in the SQL tutorial and illustrate
how to use INSERT and UPDATE statements. To experi-
ment with one of these statements, cut it to the Windows
Clipboard (using CX), paste it into WISQL (with
Cv), and then edit the statement appropriately before
executing it.
Using SQL with Delphi
Before we discuss SQL in Delphi, you must first under-
stand the two major ways a Delphi application can access a
SQL database. The first uses the Borland Database Engine
(BDE), the second uses passthrough SQL. In general, these
two methods correspond to using the Table and Query
components respectively. With just a few mouse clicks, you
can create a simple working database application with a
component. When you use a Table component, you’re
going through the BDE.

The other way to access a database is with a Query compo-
nent. This requires you to use SQL syntax, which is then
“passed through” to the SQL database engine. While the
Table component is quick and simple to use, it has limited
functionality. The Query component, on the other hand,
enables you to access all the features of SQL.
Creating a Simple Interactive SQL Application
To understand how Delphi handles SQL, we’ll create a simple
application that will execute any SQL statement entered by
the user. Essentially, this application will do the same thing
that WISQL does, but on a rudimentary level.

Start a new project called SQLapp and place the following
components on the main form:
• Edit
• Button
• Query
• DataSource
• DBGrid
OCTOBER 1995
Arrange the components so the form resembles Figure 8.

Set the Query component’s DatabaseName property to IBLO-

CAL. This is the built-in alias for the Local InterBase EMPLOY-
EE database. Then connect the DataSource component to the
Query component (i.e. set the DataSource’s DataSet property
to Query1), and connect the grid to the DataSource (i.e. set the
grid’s DataSource property to DataSource1).

Change the Button’s Caption property to Execute, and its
Default property to True. (This will enable the user to sim-
ply press J instead of clicking on the button — a nice
convenience.) Add the following code to the Button’s
OnClick event:

Query1.Close;
Query1.SQL.Clear;
Query1.SQL.Add(Edit1.Text);
Query1.Open;

The SQL property of TQuery holds the text of the SQL state-
ment to be executed by a Query component. One of the
strengths of Delphi is that the SQL property can be set at
run-time. The code shown above does the following:
• It closes the query, in case it was previously open. If was not

open, there is no harm done. In general, it is good practice
to do a Close before running any query, just to be safe.

• It clears the SQL property if it had some text remaining
from a previous query.

• It adds the text in the Edit1 component to the SQL prop-
erty. Since SQL was just cleared, this becomes the entire
text of the Query’s SQL statement.

• It opens the Query — that is, attempts to execute the
statement in the SQL property.

Compile and run the project. Then type the following code
in the Edit component and click the Execute button:

SELECT * FROM EMPLOYEE

Before the application can execute a query, it first must con-
nect to the EMPLOYEE database, just as you did when you
used WISQL. Therefore, when the application runs the Open
method, the Database Login dialog box will appear (see
Figure 9). The user name SYSDBA (the default login name for
the IBLOCAL alias), will be displayed. Either clear the User
Delphi INFORMANT ▲ 12

On The Cover

Figure 9:
The sample
application
at run-time.
Executing the
SELECT
statement
triggers the
display of the
Database
Login dialog
box.

Figure 11: This error message is returned by Delphi when it does not
receive a cursor handle as it expects to when the Open method is used
to execute a SQL statement.

Figure 10:
The sample
application
showing the
result of a
successful
SELECT
statement.
Name and Password fields, or enter the password masterkey
(the default InterBase password for the SYSDBA account) and
click on OK.

The results of the query will be displayed in the grid (see
Figure 10). Try selecting from several different tables, such as
DEPARTMENT or COUNTRY. You can scroll the records
both vertically and horizontally in the grid. Notice that you
cannot edit the records in the grid. This is because the query
is not “live”, but is a read-only query. By default, all queries
in Delphi are read-only. (Making a query “live” is beyond the
scope of this article. For now, we’ll just use the grid to dis-
play records.)
The Trouble with Open
At this point, the application will generate an error if you
enter any SQL statements other than SELECT. This is
because Delphi expects the Open method to return a set of
records from the database with a cursor. A cursor is essentially
a pointer into the set of records retrieved. Since other SQL
statements such as INSERT or DELETE do not return a set
of records, the application will generate an error as it attempts
to get the cursor back from the database.

To see this, try entering an INSERT statement in the edit
field, for example:

INSERT INTO COUNTRY VALUES ('Finland','Markka')

When you click on the Execute button, you cause an error.
If you are running the application from within the Delphi
IDE, you will first see an exception raised (see Figure 11).
After you click on OK, click the Run button in the Delphi
OCTOBER 1995
IDE to continue. Next, you’ll see the error message passed
from the local InterBase SQL engine: “Error creating cursor
handle.” By calling the Open method, you told the applica-
tion to expect a cursor and a result set back from the data-
base. However, an INSERT statement (or any statement
except SELECT) does not return a result set.

To make things even more interesting, Open actually performs
the statement you entered, even though the application com-
plained. Enter SELECT * FROM COUNTRY again, and you’ll see
that the record (Finland, Markka) was actually inserted into the
Country table. The application performed the action, but gener-
ated an error because it mistakenly thought it was going to
receive a result set from the database.

Fortunately, TQuery has another method — ExecSQL — that
executes a SQL statement and does not expect to get a result
set and cursor handle back from the database. Thus, you want
to use Open whenever executing a query and ExecSQL when
executing any other statement.

But how can the application know what kind of statement you
have entered? It could parse the text and look for the keyword
SELECT, but that’s not a very elegant solution. The best way is
to use Delphi’s exception-handling capabilities. Replace the call
to the Open method with the following call:

try
Query1.Open

except
on E:EDatabaseError do

if (E.Message <> 'Error creating cursor handle') then
MessageDlg(E.Message,mtInformation,[mbOK],0);

end;

This code will try to call Open, and when it meets an exception,
will handle it with the code in the except block that simply says
to display a message dialog box with the exception message for
any error but the “Error creating cursor handle” message. Since
we know the Open method actually executes the statement, the
net effect is that the application simply ignores the “Error creat-
ing cursor handle” message.

(Note: If you run the application from the Delphi IDE, you’ll
still get the IDE’s notification of the exception, but not the
database error message as before. If you compile the application
and run it outside the IDE, you won’t see any notification.)
Run the application, and notice that you can enter any
SQL statement, including: SELECT, INSERT, UPDATE,
and DELETE.
Delphi INFORMANT ▲ 13

On The Cover
The Database Component
By now, you are probably getting pretty tired of entering
the password each time you want to run the application
and connect to the database. The work-around to this is to
add a Database component to the form, and set its proper-
ties as follows:
• DriverName: INTRBASE
• DatabaseName: EmployeeDB
• LoginPrompt: False

Now double-click on the Database component. The Database
Properties Editor will open. Click on the Defaults button to
load the default database login parameters based on the
INTRBASE alias. All the parameters are displayed in the
Parameter overrides box (see Figure 12).
C. Rand McKinney is a Senior Technical Writer for the Delphi team at Borland
International. Previously, he helped to document the InterBase 4.0 Workgroup Server
and client tools. He has also worked as an AI researcher and a space systems analyst.
He can be reached at rand@borland.com.

Figure 12:
The Delphi
Database
Properties
Editor is dis-
played by
double-click-
ing on a
Database
component.
You’re going to keep all the defaults. The only thing you
need to add is the password. Scroll the edit box down to
the parameter entry PASSWORD= and add masterkey. Now,
because the LoginPrompt property is False, and you have
entered the password here, you won’t be bothered with the
database login.

Now modify the DatabaseName property of the Query
component to match that of the Database component
(EmployeeDB in this case). Then run the application to
confirm that you don’t have to log into the database.
Circumventing security is okay when you are developing an
application. However, when you deploy an application, you will
OCTOBER 1995
probably want to keep the login requirement to prevent unau-
thorized access to the database. To remove the password, simply
click on the Clear button in the Database Properties Editor.

Using a TDatabase object also enables an application to maintain
a persistent database connection. Starting a database connection
incurs some overhead, even if the user name and password are
automatically provided by the application. Without a Database
component, whenever an application does not have any tables in
a database open (i.e. no active TTable objects), Delphi automati-
cally closes the database connection. Although that is not a prob-
lem for this little sample application, in practice, applications
may be opening and closing tables right and left, and you will
usually want to maintain a connection to reduce some of the
connection overhead. (The Database component also enables
you to provide your application with transaction control, another
topic that is outside the scope of this article.)
Conclusion
You have now created a simple Delphi application that lets
you enter any SQL statement against the InterBase
EMPLOYEE database. It uses a Database component to avoid
database logins and exception-handling to distinguish
between SELECT statements and other statements.

Paradoxically, the simplicity of the application developed in this
article displays some of the robust features of structured query
language. In the next article of this series, we’ll exploit more SQL
features and discuss transactions, live versus read-only queries,
and parameterized SQL statements. ∆

The SQL project demonstrated in this article is available on
the Delphi Informant Works CD located in
INFORM\95\OCT\RM9510.
Delphi INFORMANT ▲ 14

OCTOBER 1995

Tables Under Construction
Creating Tables at Run-Time

On the Cover
Delphi / Object Pascal

By Cary Jensen, Ph.D
I n most database applications, you will create tables before your application
is deployed. To do this you typically use the Database Desktop, or a full-
scale database, such as Paradox for Windows or Visual dBASE. There are

times, however, when you have to create tables at run-time. This article
demonstrates how to do this using Delphi’s Table component

The Table component is not the only object you can use to create tables at run-time. For instance,
you can use a Query component and execute a CREATE TABLE statement using Structured
Query Language (SQL). Although this provides you with most of the capabilities you need in table
creation, using the Query component is a subject for a full article. Another alternative is to create a
table using the BatchMove component. BatchMove creates a new table when the destination is a
table that does not yet exist. The drawback to this technique is that it only permits you to create a
table based on an existing one.

In most cases, you will create a table by using the CreateTable method of a Table component. Using
CreateTable requires that you first assign several properties of the Table component. At a minimum
you must assign the name of the table that you want to create to the table’s TableName property.
You must also assign values to the FieldDefs property. If you are creating a table
associated with an ODBC or SQL Link driver alias, you will also need to
assign a value to the DatabaseName property. Finally, if the table type is not
obvious from the Filename property, you should also assign a value to the
TableType property.
The FieldDefs Property
The most complicated task in creating a table is defining its fields. To do this,
you use the FieldDefs property.

The FieldDefs property defines a list of TFieldDef objects, each of which
defines a field in the Table. When you open an existing table, the Table com-
ponent automatically loads the TFieldDef objects based on information sup-
plied by the BDE (Borland Database Engine). However, when you create a
table, you must use code to create the TFieldDef objects.

Although there are several techniques you can use to set the FieldDefs property
of a Table component, the easiest is the Add method of the TFieldDef object.
Add has the following syntax:
Delphi INFORMANT ▲ 15

procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.Active := False;
Table1.TableName := 'TEST.db';
Table1.TableType := ttParadox;
Table1.FieldDefs.Clear;
Table1.FieldDefs.Add('FullName',ftString,20,True);
Table1.FieldDefs.Add('DateOfBirth',ftDate,0,False);
Table1.FieldDefs.Add('NumberOfChildren',ftInteger,

0,False);
Table1.FieldDefs.Add('Salary',ftCurrency,0,False);
Table1.CreateTable;
Table1.Active := True;

end;

Figure 2: Add this code to the OnClick event of Button1 shown in
Figure 1.

Figure 3:
When you click
the Create
Table button,
the new table
will appear in
the DBGrid.

On The Cover
procedure Add(const Name: String;
DataType: TFieldType;
Size: Word;
Required: Boolean);

The first argument, Name, defines the name of the field you are
adding to the FieldDefs property. This name needs to conform to
the naming conventions for the table type you are creating.

The second argument, DataType, is a value of the type
TFieldType. The following are the available TFieldType values:
ftBoolean, ftBCD, ftBlob, ftBytes, ftCurrency, ftDate, ftDateTime,
ftFloat, ftGraphic, ftInteger, ftMemo, ftSmallint, ftString, ftTime,
ftUnknown, ftVarBytes, and ftWord.

The third argument, Size, applies to only some of the TFieldType
types. For ftBCD, use Size to identify the number of decimal
places the field will support. For ftBlob, ftBytes, ftGraphic, ftMemo,
ftString, and ftVarBytes, Size indicates how many bytes will be
allocated within the primary table for storing the value. For all
other field types, any non-negative integer value can be passed.

The final argument enables you to define whether the field you
are adding will be a required field. To make the field required,
pass the value True. Otherwise, pass the value False.
Tables on the Run
The following example demonstrates how to create a table at
run-time. In Delphi, begin by creating a new form. Place the fol-
lowing components on the form: a DataSource, Table, DBGrid,
and Button. When you are done, your form should look similar
to that in Figure 1.

Next, set the DataSource’s DataSet property to Table1. Set the
DBGrid’s DataSource property to DataSource1. Set the Button’s
Caption property to Create Table. Then, double-click the but-
ton to create an OnClick event handler and add the code shown
in Figure 2.

Run the form. When you click on the button labeled Create
Table, the table is created and activated. The table then appears
in the DBGrid as shown in Figure 3.
OCTOBER 1995

Figure 1: The basic form before adding the code in Figure 2.
Notice that in the code shown in Figure 3, the Table1 object
appears on every line. This is unnecessary. The code example in
Figure 4 produces the same result, but is sometimes more effi-
cient due to the Delphi compiler’s pointer-load optimization.
Adding Indexes
Just as there are several ways to define the TFieldDef objects for
the table you are creating, you have several viable options for
adding indexes. The easiest to use is the AddIndex method of the
TTable object. This method has the following syntax:

procedure AddIndex(const Name,
Fields: String;
Options: TIndexOptions);

The first parameter you pass is the name you want to assign to the
index. (Remember that some table types place restrictions on the
names you can assign to indexes.) The second argument is a list of
fields that are included in the index. If the index is composed of
more than one field, separate the field names with semicolons.

The final argument is a set of values that define the characteris-
tics of the index. The valid values are: ixPrimary, ixUnique,
ixDescending, ixNonMaintained, and ixCaseInsensitive. Remember
that sets are enclosed in brackets. You can define two or more
characteristics of the index by enclosing a comma separated list
of TIndexOptions within the brackets.

The following is an example of a statement that will define an
index for Table1 created in the last example:

Table1.AddIndex('test',
'fullname;dateofbirth',
[ixPrimary,ixUnique]);
Delphi INFORMANT ▲ 16

On The Cover

Figure 4 (Top): By using with statements, the code in this OnClick
event is more efficient than that shown in Figure 2. It eliminates
repeating Table1 on each line (which allows the compiler to create
more efficient code), and is easier to read. Figure 5 (Bottom): You
can create the Table component at run-time by placing this code in the
ButtonClick procedure.

procedure TForm1.Button1Click(Sender: TObject);
begin
with Table1 do

begin
Active := False;
TableName := 'TEST.db';
TableType := ttParadox;
with FieldDefs do

begin
Clear;
Add('FullName',ftString,20,True);
Add('DateOfBirth',ftDate,0,False);
Add('NumberOfChildren',ftInteger,0,False);
Add('Salary',ftCurrency,0,False);

end;
CreateTable;
Active := True;

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var

myTable: TTable;
begin

myTable := TTable.Create(Form1);
with myTable do

begin
TableName := 'demotab';
TableType := ttParadox;
FieldDefs.Clear;
FieldDefs.Add('First',ftString,10,True);
FieldDefs.Add('Second',ftString,10,False);
AddIndex('mainindex','first',[ixPrimary,ixUnique]);
CreateTable;
Free;

end;
end;

Figure 6: The File menu for the CARDS.DPR
application.

procedure TForm1.New1Click(Sender: TObject);
begin

OpenDialog1.Options :=[];
if OpenDialog1.Execute then

begin
CheckState;
if FileExists(OpenDialog1.Filename) then

begin
if MessageDlg('Replace ' + OpenDialog1.Filename,

mtConfirmation,[mbOK,mbCancel],
0) = mrCancel then

Exit;
end;

CreateCardTable(Table1,OpenDialog1.Filename);
Table1.Active := True;
ShiftMRU(OpenDialog1.Filename);
Self.Caption := 'Cards: ' + OpenDialog1.Filename;

end;
end;

Figure 7: This event handler is associated with the File | New menu
selection and calls the CreateCardTable procedure shown in Figure 8.
Although the Table component was created as part of the form
in the preceding example, this isn’t necessary. You can also create
the Table component itself at run-time. This is demonstrated in
Figure 5. If you create a new form, place a single button on it,
and then add this code to the button’s OnClick event handler, a
Paradox table named DemoTab.DB will be created when you
click on the button.

Note however, that because you did not add a Table object to
the form to begin with, Delphi did not automatically add the
necessary support units to your unit’s uses clause. You must do
this manually. To make this code work, at a minimum you will
need to add the DBTables and DB units to your uses clause.
The following is an example of how this uses clause will appear
when you’re finished:

uses
SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, DBTables, DB;
OCTOBER 1995
A Practical
Example
Figure 6 shows the
form for a project
called
CARDS.DPR. It
is designed to act
as a simple phone
list. An application
such as this typi-
cally allows a user
to maintain multi-
ple lists of phone
numbers.
Furthermore, it is
also common for a
user to be able to
create a new list on
demand. As shown
in the menu in

Figure 6, CARDS.DPR provides both of these capabilities.

While it is not practical to consider all the code associated with
CARDS.DPR, there are several issues that apply to creating
tables. The first issue is creating a table at run-time. This is
produced in CARDS.DPR with the use of an event handler for
the File | New menu selection, and a procedure named
CreateCardTable. The event handler is shown in Figure 7.
Figure 8 shows the code for CreateCardTable.

If you inspect the code for the File | New event handler, you
will also notice that it makes calls to two additional procedures:
CheckState and ShiftMRU. CheckState is called when the user
closes the application or changes the current table. It tests to see
if the current table has been edited, and asks the user if they
want to save the changes:
Delphi INFORMANT ▲ 17

On The Cover

procedure TForm1.CreateCardTable(Tab: TTable;
const tabName: String);

begin
with Tab do
begin

Active := False;
TableName := tabName;
with FieldDefs do

begin
Clear;
Add('CompanyName',ftString,35,True);
Add('LastName',ftString,18,False);
Add('FirstName',ftString,15,False);
Add('Mr/Mrs',ftString,10,False);
Add('Address1',ftString,35,False);
Add('Address2',ftString,35,False);
Add('City',ftString,25,False);
Add('State/Prov',ftString,25,False);
Add('Zip/Postal Code',ftString,15,False);
Add('Phone',ftString,20,False);
Add('Fax',ftString,20,False);
Add('LastContact',ftDate,0,False);
Add('Comments',ftMemo,10,False);

end;
CreateTable;
AddIndex('CompanyIndex','CompanyName',

[ixPrimary,ixUnique]);
end;

end;

Figure 8: The CreateCardTable procedure creates an indexed table at
run-time.

Figure 9 (Top): This event handler is associated with the File | Open
menu selection and calls the ValidateTable procedure shown in Figure
10. Figure 10 (Bottom): The ValidateTable procedure will raise an
exception if the table the user is attempting to open does not have the
appropriate structure.

procedure TForm1.Open1Click(Sender: TObject);
var

oldTable: String;
begin

{ Permit selection of existing tables only }
OpenDialog1.Options := [ofFileMustExist];
if OpenDialog1.Execute then

begin
CheckState;
with Table1 do

begin
FieldDefs.Clear;
oldTable := Tablename;
if Active then

Active := False;

Tablename := OpenDialog1.FileName;

try
ValidateTable;

except
on EBadTable do

begin
Tablename := oldTable;
Active := True;
Raise;

end;
end;

Active := True;
ShiftMRU(OpenDialog1.Filename);
Self.Caption := 'Cards: '+OpenDialog1.Filename;

end;
end;

end;

procedure TForm1.ValidateTable;
var

tempTable: TTable;
i: Integer;

begin
tempTable := TTable.Create(Form1);
CreateCardTable(tempTable,'__temp.db');

if Table1.FieldDefs.Count <>
tempTable.FieldDefs.Count then

begin
tempTable.Free;
raise EBadTable.Create('Invalid number of fields');

end;

for i := 1 to tempTable.FieldDefs.Count-1 do
begin

if (tempTable.FieldDefs.Items[i].Size <>
Table1.FieldDefs.Items[i].Size) or
(tempTable.FieldDefs.Items[i].FieldClass <>
Table1.FieldDefs.Items[i].FieldClass) or
(tempTable.FieldDefs.Items[i].Name <>
Table1.FieldDefs.Items[i].Name) then

begin
tempTable.Free;
raise EBadTable.Create('Invalid table structure');

end;
end;

tempTable.Free;

end;
procedure TForm1.CheckState;
begin

if (Table1.State = dsEdit) or
(Table1.State = dsInsert) then

if MessageDlg('Save changes to this record?',
mtConfirmation,
[mbOK,mbCancel],0) = mrOK then

Table1.Post;
end;

ShiftMRU is a procedure that updates the most recently used
(MRU) file list. Upon startup of the application, the most
recently used files are loaded into the File menu from an .INI
file. Each time a new file is opened or created, it is added to the
MRU list, and the .INI file is updated. [For a demonstration of
using .INI files with Delphi, see Douglas Horn’s article
“Initialization Rites” in the August 1995 Delphi Informant.]

The second interesting part of this application is the code that
executes when a user opens an existing table. You must verify
that this table conforms to the proper file structure. The code in
Figure 9 executes when the user selects File | Open.

Notice that this code includes a call to a procedure named
ValidateTable. If ValidateTable (see Figure 10) determines that the
selected table does not have the proper structure, it raises an
exception, which is handled by a try...except block in the File |
Open event handler.

ValidateTable starts by creating a new, temporary table using the
CreateCardTable procedure. The next step is to compare the
number of TFieldDef definitions between the temporary table
and the one being opened. If the tables have a different number
OCTOBER 1995 Delphi INFORMANT ▲ 18

On The Cover
of TFieldDef definitions, an exception is raised. If the number of
TFieldDef definitions match, ValidateTable then steps through
each of the TFieldDef objects defined in the FieldDefs property,
comparing their Size, FieldClass, and Name properties. Again, if
any inconsistencies are found, an exception is raised. (This
exception is a custom exception declared in the implementation
section of this unit.)
Conclusion
Creating a table at run-time is an essential feature of many appli-
cations. This article has described one way to do this using a
Table component. It also demonstrated the use of this technique
in a practical application. ∆

The demonstration Delphi projects referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\95\OCT\CJ9510.
OCTOBER 1995 Delphi INFORMANT ▲ 19

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, author of numerous books on data-
base software, and Contributing Editor of Delphi Informant. You can reach Jensen Data
Systems at (713) 359-3311, or through CompuServe at 76307,1533.

OCTOBER 1995

Database Apps: Part I
Getting Started: The Database Desktop and Application Expert

On the Cover
Delphi

By Antony Mosley
A re you new to Delphi? Don’t worry — everybody is. Are you new to
programming? Never fear — Delphi is the perfect tool for you to get
started. You’ll be surprised at the applications you can develop with

only good drag-and-drop experience.

The application we’ll build enables you to generate mailing labels and is composed of a simple data-
base and report. First, we’ll build a database table to store the names and addresses of a mailing list.
Next, we’ll use Delphi to organize the project and do a lot of the window and menu design work.
Then we’ll create a form for entering and editing names in the database. In the next installment of
this series, we will use ReportSmith to create the labels and then put all the elements together in a
compiled application. After completing this tutorial, you might want to experiment with various
enhancements. This is good — tweak and twist the sample application as much as you like.
Create a Table
To begin, go to the Windows File Manager and create the directory C:\LABELS. This will be our
working directory. Then start Delphi.

If you have worked with other database tools, this process should be a breeze. To build the table,
we’ll use the Database Desktop that ships with Delphi:
• From Delphi’s menu select Tools | Database Desktop (or select the
Database Desktop icon from the Delphi program group in Windows).

• Select File | New | Table from the Database Desktop menu (see Figure 1).
You will be prompted to select a table type. Select dBASE for Windows from
the drop-down list, then click OK.

• The Create dBASE Table dialog box will be displayed. Begin typing at
the first line under Field Name, and press F to move to the next
field. Enter the database structure as shown in Figure 2.

• Click the Save As button to display the Save As dialog box. Enter
C:\LABELS\LABELS.DBF for the file name, then click OK.
Create an Alias
Next we’ll create an alias for the \LABELS directory. Among other things, an
alias is a shortcut to a database. [For a complete introduction to aliases and
their use with Delphi, refer to Cary Jensen’s article “A Programmer’s
Compass” in the Premiere issue of Delphi Informant.] As you work with
Delphi, you’ll find that accessing tables by an alias — rather than a hard-
wired directory path — provides far more flexibility.
Delphi INFORMANT ▲ 20

On The Cover

Figure 1 (Top): The Database Desktop handles table creation, queries,
and other database-specific tasks. Figure 2 (Bottom): Using the Create
dBASE Table dialog box to create the table for our sample application.

Figure 3: Creating an alias at the Alias Manager dialog box.
Here are the steps to create the alias:
• From the Database Desktop, select File | Aliases to display

the Alias Manager dialog box.
• Click on the New button, and enter Labels for the

Database Alias.
• Accept Standard (the default) for the Driver Type, then

change the Path to C:\LABELS. (You can also click the
Browse button to select the directory using a browser.) The
dialog box should look as it does in Figure 3. Click the OK
button. You will be prompted to save the alias in the
IDAPI.CFG file. Click the OK button.

Now let’s make C:\LABELS the working directory. This will keep
us from having to use the browser or enter the complete path
name whenever we need a table from the \LABELS directory. To
do this, select File | Working Directory to display the Set
Working Directory dialog box. Then select Labels from the
Aliases drop-down list and click on OK.
Figure 4: The Form Templates page of the Gallery Options dialog box
allows you to select a form template as the default for a main form.
Enter Some Data
Now take a few minutes to enter about five names so we’ll have
some live data to work with while designing the sample appli-
cation. To do this, select File | Open | Table | LABELS.DBF to
open your table. Then, press 9 or select View | Edit Data
from the menu to enter Edit mode. Use your imagination (or
your phone book) and enter five names and addresses to use
OCTOBER 1995
for your application. When you’re finished, close the Database
Desktop window by double-clicking its control box (or by
pressing A4). Your changes will be saved automatically.
Configuring Delphi
Delphi is capable of generating many of an application’s elements,
so we might as well take advantage of this feature. Let’s do this by
configuring Delphi to generate much of the sample project for us.
(A Delphi project holds all the files for a complete application.)

From Delphi’s main menu, select Options | Gallery. The Gallery
Options dialog box will be displayed. Select the Form Templates
tab (see Figure 4) and click on the Blank Form icon. Then click on
the Default Main Form button. This will cause Delphi to automat-
ically begin any new project with a blank form as the main form.

Now click on the Project Experts tab, and select the Application
Expert icon. Unless you have installed others, it will be the only
one available. Click on the Default Project button to tell Delphi
that you want expert assistance while developing your applica-
tion. Now Delphi will guide you through most of the design
work for a new application. (It’s important to keep in mind that
every process that Delphi automates can also be performed man-
Delphi INFORMANT ▲ 21

Figure 5: Delphi as it appears at start up by default.

On The Cover
ually. When you begin using Delphi regularly you can decide
which features you would like to have automated and which fea-
tures you would like to handle manually. Who knows — one day
you may even decide to code an entire project.)

Click the OK button to accept the new Gallery options. Delphi will
probably appear as it does in Figure 5. If there is another project
open, you may want to close or save it. In any case, Delphi will
close any loaded project automatically when you start a new one.
Figure 6 (Top): The first screen of the Application Expert determines which
menu options will appear on the new application. Figure 7 (Middle):
The second screen of the Application Expert (shown here with its
Extension Filter dialog box displayed) determines the file types that will
be recognized by the new application’s File Open and File Save dialog
boxes. Figure 8 (Bottom): The third screen of the Application Expert
allows you to create a speedbar for the new application.
The Application Expert
Now let’s put the new Gallery options to use. Select File | New
Project from the menu. The first screen of the Application
Expert will be displayed (see Figure 6). The choices you make at
this screen determine if the application you’re creating will have a
menu bar, and if so, which of up to four standard Windows
menu options it will contain. Select all the standard Windows
menus: File Menu, Edit Menu, Window Menu, and Help Menu
(as shown in Figure 6).

Then press the Next button to advance to the next screen of
the Application Expert (see Figure 7). In this step you specify
the file types to be used by the application’s File Open and
File Save dialog boxes. (Note that this screen of the
Application Expert would not be displayed if the File Menu
option had not been checked on the preceding screen.) Click
on the Add button to display the Extension Filter dialog box
(again, see Figure 7). Enter Form as the Description and .DFM
as the Extension. Click OK and then click the Add button
again. This time enter Labels as the Description and .RPT
as the Extension, and click OK. The new application will now
filter out all files except for .DFM and .RPT files when it
presents the File Open or File Save dialog box to the user.
Press the Next button to continue.

The next screen of the Application Expert allows you to define a
speedbar for your application (see Figure 8). Notice that the menu
items you selected at the first screen of the Application Expert are
listed in the Menus list box. Each menu item command has an
associated speed button listed in the Available commands list box.
OCTOBER 1995
Let’s start by selecting the File menu. From the Available com-
mands list box, select the New menu item and click the Insert
button. The “New” icon will appear in the window above the two
list boxes. Click on the Space button to add a space after this
speedbar item (or simply press s). To quicken the pace you
can now add the Open, Save, Print, and Exit icons to your speed-
bar by double-clicking each one. Now add a space between each
icon by clicking on each one and clicking the Space button.

Next, let’s add the Edit menu items to the speedbar. These
should precede the Print icon. Click on the Print icon on the
Delphi INFORMANT ▲ 22

On The Cover

Figure 11: The sample application at design time.

Property Column Value Column

bject
elector
speedbar to move the pointer there. In the Menus list box, select
Edit and then add the Cut, Copy, and Paste icons from the
Available commands list box.

Now let’s add a Help icon. Place the pointer after the Exit icon on the
speedbar and select Help from the Menus list box. Now double-click
on the Search for Help On icon. When you’re done, the screen
should be like Figure 9. Press the Next button. The last dialog box of
the Application Expert prompts you for basic information about the
new application (see Figure 10). Enter LabelPro as the application’s
name. Then enter C:\LABELS to indicate the directory in which
you’ll store the application. This is the directory that we created earli-
er, and that contains the table file, LABELS.DBF. If this directory
did not exist, the Application Expert would create it for you.

In the Options group box, select Create a status line and Enable
hints. This will direct the Application Expert to place a Status bar at
the bottom of the main form, and to display help hints for the vari-
ous components and menu items. Finally, press the Create button.

You have just created a Windows application (see Figure 11),
and Delphi has done most of the work for you. The main form
is (appropriately) titled MainForm, and contains the menu and
speedbar specified using the Application Expert. There are also
five components floating about on the form below the speedbar
(which we’ll discuss shortly). You should also take a look at the
window behind the form by clicking on the tab labeled
OCTOBER 1995

Figure 9 (Top): The completed speedbar screen for our sample
application. Figure 10 (Bottom): The final screen of the Delphi
Application Expert.
“Main”. This window dis-
plays the Object Pascal code
that Delphi generated to
create the form.
Figure 12: The Object
Inspector allows you to modify
the properties of the form and
every component it contains.

Events Page
The Object Inspector
The Object Inspector is to
the left of the main form (see
Figure 12). This special dialog
box allows you to manipulate
the properties of the form and
every component on the form.
It consists of two tabbed
pages: Properties and Events.
By default, the Properties page
appears on top when you start
Delphi. [For a comprehensive
introduction to the Object
Inspector, see Douglas Horn’s
article “Delphi: A Visual
Tour” in the Premiere issue of

O
S

Delphi Informant.] If you click on a different object on the form, its
properties will appear in the Object Inspector’s Value column, and
the name of the object will appear in the Object Selector. For
example, select the Menu component to display its properties in
the Object Inspector.

With the Menu component still selected, right-click on it and a
pop-up menu with more options will appear. If you select Menu
Designer, for example, you will enable menu editing features.
You can also right-click on the other components on the form to
access design features specific to those components.

The five components arranged haphazardly below the speedbar
on the form are non-visual components. That is, these compo-
nents will not appear at run-time. However, they are visible
during design time so their properties can be modified.

Let’s use the Object Inspector to change the form’s name from
MainForm to LabelPro. Click on a blank area on the form to
select it. The form’s properties will appear in the Object
Inspector. Select the Caption property and enter LabelPro in the
Value column as the form’s new name. You’ll see the name of the
Delphi INFORMANT ▲ 23

On The Cover

Figure 13: The sample application at run-time.
form change as
you type it.
To test the
application,
select Run |
Run from the
Delphi menu
(or press 9).
The form
appears as it

will for your users, with an active menu and working speedbar
buttons (see Figure 13). Try using some of the menu items by
selecting them with the mouse. Resize the window to full screen
if you’d like. After you’ve experimented with your form, close it
by clicking on the Exit button on the speedbar. You will imme-
diately return to design mode.
Making the Form Data Aware
Now let’s add data access capabilities to this form. That is, we
want to be able to add and edit records in the table
(LABELS.DBF) we created earlier.

Select the Data Access page on the Component Palette and select
the Table component. Now click on a blank space on the form,
and the Table component will appear in that space. You can also
place a component by simply double-clicking on it to place it in
the center of the form. Next, select the DataSource component
(located to the left of the Table component on the Data Access
page) and place it on your form. Next, from the Data Controls
page, double-click the DBGrid component to place it on your
form. These — Table, DataSource, and DBGrid — are the three
data-aware components we need to complete the sample applica-
tion. Let’s put them to work.
Figure 14 (Top): Adding data-aware components to the sample appli-
cation. Figure 15 (Bottom): The sample application as it should
appear after following this article’s step-by-step directions.

Antony Mosley is a technical writer and program developer at Advanced
Systems, Inc., a custom software developer and computer systems inte-
grator. He can be reached on CompuServe at 73123,1273 or by mail at:
ASI, 3040 Williams Drive, Suite 102, Fairfax, VA 22031.
Activate Your Objects
Using the Object Inspector, we’ll give life to the DBGrid compo-
nent. This is done by configuring the Table and DataSource com-
ponents with the Object Inspector. Select the Table component by
clicking on it. Notice that Table1: TTable appears in the Object
Selector. This indicates the component has focus. All the controls
in the Object Inspector are now ready for the Table component.

In the Object Inspector select the DatabaseName property and
select LABELS from the drop-down list in the Value column.
This drop-down list contains the alias names we first saw in the
Database Desktop. Now set the Table component’s TableName
property to LABELS.DBF. This is the table we created in Database
Desktop. If there were other tables in the directory specified by
the alias, they would also appear in this drop-down list. Set the
Table’s Active property to True by double-clicking in the Value
column. This activates the connection to the table.

Now click on the DataSource component on your form. The
Object Inspector changes again to work with this control. Set
the DataSet property to Table1. This connects the form to the
table you specified using the Table component. Set the Enabled
property to True, and the Name property to DataSource1.
OCTOBER 1995
Select the DBGrid. Drag its handles to enlarge it, and move it closer
to the bottom left of your form. Then, with the DBGrid still select-
ed, use the Object Inspector to set DBGrid’s DataSource property to
DataSource1. The DBGrid is now active with data from the
LABELS.DBF table.
A Final Touch
We’re going to need a control to move around in the table dis-
played by the DBGrid. From the Data Controls page of the
Component Palette, select the DBNavigator component. Place it
on your form next to the speedbar (see Figure 14). In the Object
Inspector, set DBNavigator’s DataSource property to DataSource1.
If necessary, you can resize your form to allow more room for the
DBNavigator and DBGrid. Now test the application by selecting
Run | Run from the menu (see Figure 15). Play around with the
DBGrid. For example, you can resize the columns by dragging
their partitions to the desired width.
Conclusion
As you can see, creating a simple database application in Delphi
isn’t difficult, especially with the help of Delphi’s Gallery and
Application Expert. We were able to create a menu, speedbar,
and manipulate data — without writing a single line of code.

We’re not done yet, however. In the next article of this series we’ll
continue with the project. We’ll also learn how to use ReportSmith
to generate labels. ∆

The demonstration project referenced in this article is available on the
Delphi Informant Works CD located in INFORM\95\OCT\AM9510.
Delphi INFORMANT ▲ 24

OCTOBER 1995

Delphi32: A First Look
The Standard Bearer for Win32 Development?

Informant Spotlight
Delphi32 / Object Pascal

By Richard Wagner
T he enthusiasm that has surrounded Delphi since its initial release in
February of this year has been nothing short of remarkable. Not only has
it won over many long-time Visual Basic, PowerBuilder, and C++ devel-

opers, but it has been extremely well-received by the press and many large
corporations. It’s no wonder that when Delphi32 was rolled out at the Borland
Developer’s Conference in San Diego this August, that the room was packed
with excited onlookers awaiting a first glimpse at Delphi32 — the 32-bit
release of Delphi for Windows 95 and Windows NT. I didn’t take a poll at that
initial viewing, but from the excitement in the air, I suspect none were disap-
pointed with what they saw.

In many ways, Delphi 1.0 took Windows 3.x architecture nearly as far as it could go. Delphi32
is aiming to pick up where its 16-bit sibling left off, as evidenced by a feature set designed to
maximize the Win32 environment: 32-bit architecture, multithreading, 32-bit optimizing com-
piler, OCX/OLE support, rich data types, Win95 UI enhancements, and more.

In this article, we’ll take an in-depth look at Delphi32 by exploring many of these new fea-
tures. We’ll close by looking at how the 16-bit version of Delphi (referred to as Delphi16
throughout this article) and Delphi32 can coexist.
Two Steps to 32-Bitness
At the Borland Developer’s Conference, Delphi product manager Zack Urlocker emphasized
that one of the most important capabilities of Delphi32 is to provide full capability with exist-
ing Delphi16 code. To convert your 16-bit applications to 32-bit simply follow
these two steps:
• Open your project using File | Open.
• Select Project | Compile from the menu (see Figure 1).

In other words, simply recompile your project to take advantage of the 32-bit
architecture. However, as you would expect, there are certain cases when exist-
ing code must be modified so it can work in the Win32 environment. Any
calls made to Windows API functions that were altered in Win32 must be
changed. Additionally, as you will read later, there have been several data type
enhancements. The result is that any 16-bit inline assembler code and low-
level code that depends on the physical size of integers will need modification.
Win32 Facelift
Borland has historically gone their own way with UI standards over the years (think
of BWCC.DLL), but that attitude is now shifting. The company is paying keen
Key Enhancements in Delphi32

• 32-bit optimizing compiler
• Database engine improvements
• OCX support
• Multithreading support
• New data types (long String,

variant, and WideChar)
• Ease in porting 16-bit code to

32-bit environment
• OLE Automation
• Win95 common controls
• Closer integration with C++
• Enhanced IDE (debugger)
Delphi INFORMANT ▲ 25

Informant Spotlight

Figure 1: Selecting Project | Compile from
Delphi32’s menu is all that is needed to convert
most 16-bit applications into 32-bit .EXEs.
attention to Windows standards these days and Delphi32 defi-
nitely reflects the change in philosophy.

The Delphi32 IDE (integrated development environment) has
been transformed to look and feel just like Windows 95 soft-
ware should (see Figure 2). You’ll notice two examples imme-
diately: 1) The “Borland-style” tabs on the Object Inspector
and Component Palette are now standard Windows 95 tabs.
2) Gone are the bitmap-style OK, Cancel, and Help buttons.
More importantly for you, however, Delphi32 provides new
Windows 95 common UI controls on the Component Palette
for you to use.
Figure 2: Delphi32’s new user interface conforms to the strict
Windows 95 logo standards.

Figure 3: New user interface controls help you create a Windows 95
“look and feel” within your applications.

TTreeView

TProgressBar

TTrackBar

TRichEdit

TPageControl

Figure 3 illustrates the use of several of these controls, which
are discussed below:
• TPageControl. PageControl is used to create Win95-style

tabbed dialog boxes. With this component, you can add
pages more easily than with its Delphi16 predecessor
(TabbedNotebook) by right-clicking and choosing New
Page from the menu. Another ease-of-use feature is the
ability to activate a page by clicking its tab with your
mouse rather than having to change the ActivePage prop-
erty in the Object Inspector.

• TTreeView. TreeView is a Win95 version of the Outline
component in Delphi16. The TreeView component is
used quite often in Windows 95. Look at the Windows
Explorer or Delphi32’s Database Explorer (see Figure 11
later in the article) for other examples of a TreeView.

• TProgressBar. The ProgressBar is a Win95 “percentage
meter” that enables you to show the percentage remaining
in a lengthy process.
OCTOBER 1995
• TTrackBar. The TrackBar is a “slider like” component used
to adjust values that fall within a continuous range.

• TRichEdit. The RichEdit box goes beyond
the basic editing capabilities of the text box to support
character properties (font, color, etc.) and paragraph
properties (alignment, tabs, numbering, etc.).

• TTabControl. The TabControl allows you to create a set of
tabs. If you want the tabs associated with “pages”, then use
the PageControl component.

• TUpDown. Used in conjunction with an edit box, the
UpDown control is typically used to create a circular loop
of input values.

• THeaderControl. Enhancing the capabilities of the 16-bit
Header component, the HeaderControl is used to display
headings above columnar data. You can divide the header
into multiple sections when you need to place a heading
above multiple columns of text or numbers.

Most of the new Win95 controls are enhancements of 16-bit
controls as shown in the table in Figure 4. And, as you work
within Windows 95, you will begin to see how extensively these
common controls are used throughout the operating system’s UI.
Beyond the 64K Barrier
The 64K harness that Windows programmers have always
had to wear has been shed forever with Windows 95. As a
result, you can declare data structures to be as big as you like
in Delphi32, limited only by operating system memory.

Delphi32 has several new type enhancements to take advantage
of the new Win32 environment. Because of the platform change,
Delphi INFORMANT ▲ 26

Delphi16 Control Delphi32 Control

TOutline TTreeView
TGauge TProgressBar
TTabbedNotebook TPageControl
TEdit TRichEdit
TTabSetT TabControl
TSpinButton TUpDown
THeader THeaderControl

Figure 4:
Evolution of
Delphi UI
controls.

Informant Spotlight
Integer and Cardinal values are now 32-bit values as compared to
being 16-bit values in Delphi16. (You can still use a 16-bit value
by declaring a Smallint or Word variable.) Other type enhance-
ments include new string, variant, and character types.
Three New Types
Probably one of the things you became frustrated with and
eventually accepted in Delphi16 (as well as earlier versions of
Pascal) was the 255-character limit of the String type. Say
good-bye to that limitation forever. A new long String type
will enable you to create strings of virtually unlimited lengths.
(You will be forced to contain yourself to 3GB or so.)

By default, you will work with the new long String type, but
you can continue to use the 255-character String type by
adjusting the new compiler directive $H. You can also con-
tinue to use a shorter string by declaring the string of type
ShortString that is equivalent to the Delphi16 String type.

Another major benefit to the new String type is that long
strings are terminated by a null character. Therefore, you can
use a long string anywhere you used to use a null-terminated
string in Delphi16. If you regularly create DLLs in Delphi,
you will definitely appreciate this improvement; you no longer
need to constantly convert strings using StrPCopy and StrPas.

Object Pascal loosens its collar slightly with the addition of a
variant type. The new variant type provides increased flexibil-
ity by allowing you to dynamically change the type of a vari-
able. The variant type can be useful in many everyday scenar-
ios, but becomes critical for such tasks as OLE automation.
The variant type can represent a string, integer, or floating-
point value and is housed in a 16-byte structure that contains
type information and a value.

Delphi32 also sports new character types to support the
Unicode standard. (Note that Windows 95 does not fully
support Unicode, but Windows NT does.) The equivalent of
the Char type in Delphi16, ANSIChar is the new name for 8-
bit characters. If you are creating applications for US and
European users, chances are that this character type is all you
will need to work with. However, if you need to create appli-
cations that will be used by Kanji or Arabic users, you can use
the new WideChar type, which is a 16-bit Unicode character.
You can continue to use Char in Delphi32 — it treats this
type as equivalent to ANSIChar.
OCTOBER 1995
Multithreading
Multithreading is one of the underlying strengths of the
Windows 95 32-bit environment (see sidebar “Windows 95
Multithreading” on page 29). In Delphi32, you have the abil-
ity to create Multithreaded applications. At press time, little
information was available on writing Multithreaded applica-
tions, but a quick look at some of the functions will show
you the capability you can expect.

CreateProcess creates a process (the term used to describe an
instance of a running program) and a thread kernel object,
which is used to manage the primary thread of the process.
(Because you are in the Win32 environment, think “process”
not “application”. For example, you should use CreateProcess
rather than WinExec to launch an application in Windows
95.) You can create a new thread in your application using
CreateThread and set its priority level using SetThreadPriority.
The ExitThread function terminates the thread.

Whenever you have multiple threads within a process, you may
need to synchronize their execution. Use WaitForSingleObject
and WaitForMultipleObjects to suspend a thread until an object
(another thread, process, and so on) is available. You can also
use EnterCriticalSection function to force all other threads
within the same process to be suspended until the active
thread calls LeaveCriticalThread.
Optimized Code without the Work
So far, we have discussed new features that you can optionally
employ in your applications to exploit the Win32 environment.
However, one of most powerful new features of Delphi32 is
something you get by default: its new 32-bit optimizing native
code compiler. This is actually the same back-end compiler that
Borland C++ uses. Its benefits are twofold: faster performance,
and tighter code sharing between Delphi and C++.

Faster performance. So you thought performance of your
Delphi16 code was great? Wait until you see Delphi32.
Borland has benchmarked Delphi32 applications and have
found that they are some 300 to 400 percent faster than
equivalent Delphi16 applications. Using the Sieve,
Whetstone, File Write, and File Read benchmark tests,
Delphi32 also was found to be 15 times faster than 16-bit
Visual Basic 3.0 and an unbelievable 815 times faster than
PowerBuilder 3.0. Figure 5 lists these results. (The higher
numbers denote greater performance.)

Tighter code sharing with C++. In Delphi16, you can share
C++ code only by using a dynamic link library (DLL) and call-
ing functions within the library at run-time. In some cases, this is
advantageous, but you may often want to access those same
functions within the same .EXE, not an external file.

Using Delphi32, you can take advantage of Delphi’s use of
the C++ back-end compiler to do just that. You can compile
C++ .OBJ object files into your Delphi application by using
the $L compiler directive, or you can create .OBJ files with
Delphi INFORMANT ▲ 27

Informant Spotlight

Test PowerBuilder 3.0 Visual Basic 3.0 Delphi 1.0 Delphi32
(loops/sec) (16-bit) (16-bit) (16-bit) (32-bit)

Sieve 0.22 11.95 52.77 179.37

Whetstone 0.04 1.41 4.70 15.53

File write 0.05 0.42 0.74 2.89

File read 0.05 0.33 1.75 5.28

Figure 5: Delphi32 benchmark tests. The results are from an overview
of the 32-bit Delphi Compiler for Windows 95 and NT (Zack Urlocker,
Borland International).
Delphi32 for inclusion in a C++ application (see Figure 6). In
other words, you can create a single .EXE using both C++
and Delphi, developing on the platform that makes the most
sense. .OBJ support also allows you to utilize an investment
in C++ class libraries that you may have already made.
Figure 6: Delphi32’s Linker options page in
the Project Options dialog box.
Compiler opti-
mizations. In
the past, the task
of optimizing
compiled code
was considered
an art form and
involved rou-
tinely tweaking
compiler direc-
tives to achieve
maximum per-
formance.
Delphi32 allows
you to achieve
optimizations
that are “guaran-
Type Definition

Register optimizations Frequently used variables are placed into
CPU registers to shorten the time it takes
to access them. Additionally, the scope of
teed bulletproof” without having to do a thing (see Figure
7). The table in Figure 8 details the types of optimizations
performed.

Optimizing linker. During the compiling process, a new
linker helps produce smaller, more efficient applications by
eliminating unused functions, and unused static and virtu-
al methods.
OCTOBER 1995

Figure 7:
Checking the
Optimization
box in the new
Compiler page
turns on the
optimizing fea-
tures.

Call-stack overhead
elimination

Common subexpressio
elimination

Loop induction variabl

Figure 8: Compiler opt
The linker also employs unit caching.
With this functionality, when you recom-
pile an application, any units or forms
that have not been changed since the orig-
inal compile will be linked in memory
instead of from disk. Unit caching can
help speed linking by 20 to 50 percent.
Additionally, better unit version checking
reduces the need to recompile units.
OLE: Key to Win32 Extensibility
We have heard much hype about OLE since Windows 3.1 was
released, but the real-world benefits of OLE were fairly suspect
until now. This has definitely changed, as the practical uses of
OCXes and OLE automation are real and tangible. Delphi32
will provide full support for these technologies which are proving
to be the keys to Win32 programming extensibility. You may
find it helpful to think of OCX controls as the Win32 equivalent
of VBXes. But this is really not true. VBXes were developed for
the Visual Basic developer in mind, while OCXes are truly appli-
cation-independent controls written based on OLE technology.
Delphi32 will provide full support for OCX controls. For exam-
ple, the field test version of Delphi includes an OCX control that
is a fully functional Web browser (see Figure 9).

You can work with OCX controls much in the same manner
you worked with VBXes in Delphi16. As far as OCX cre-
ation, you can certainly create OCXes in Delphi32, but you
must do so at the API level, which is no small order. OLE
automation allows you to control OLE servers from within
another application. For example, you can use OLE automa-
tion to create Microsoft Project projects or generate Excel
charts from within Delphi32. If you used DDE Execute com-
mands in the past, you will find many of the same basic prin-
ciples applicable to OLE automation. The simple example in
Figure 10 shows that you can use Microsoft Word for
Windows as an OLE server to create a new document, paste
Clipboard contents into it, and then save it.
Delphi INFORMANT ▲ 28

variables is analyzed to determine when
registers can be reused.

Parameters are passed into CPU registers
when possible rather than being pushed
onto the stack.

n Repeated expressions in complex mathe-
matical calculations are eliminated, so
that no common subexpression runs more
than once. This allows you to construct
complex math algorithms that are easy to
read, and let the compiler worry about
optimizing the operation.

es Loop induction variables are used to
decrease the amount of time it takes to
access arrays or strings within loops (e.g.
a for loop).

imizations.

Informant Spotlight

Figure 9 (Top): A sample OCX control allows you to surf the Web
within your Delphi application. Figure 10 (Bottom): Using Word for
Windows as an OLE server in Delphi32.

implementation

uses OleAuto;

procedure TForm1.Button1Click(Sender: TObject);
var

{ New Variant type }
MSWord: Variant;

begin
MSWord := CreateOleObject('Word.Basic');
{ The following commands are actually

WordBasic macro commands }
MSWord.FileNew;
MSWord.EditPaste;
MSWord.FileSaveAs('MyDoc');

end;
Win32 Database Engine
If you are a database developer, another major enhancement
that you will benefit from is the new Borland Database Engine
(BDE) 3.0. The new 32-bit BDE has been completely over-
hauled to provide much greater database support than in the
previous 16-bit implementations. Key new improvements
include the following:

Win32 compliance. BDE 3.0 supports Win95 logo
requirements. The engine itself is 32-bit (as are the com-
panion SQL Link drivers), and supports long filenames.
The new BDE uses the Windows Registry to store configu-
ration information, eliminating the need for a separate
.CFG (configuration) file.

Multithreading support. BDE 3.0 is thread-safe, supporting
concurrent application threads accessing the same database
tables. In addition, as a practical example of multithreading
with BDE 3.0, queries that used to monopolize CPU time
until their completion in Delphi16 are now threaded so that
you can perform other tasks at the same time.

Client Data Repository. BDE 3.0 now includes a facility to
store persistent data. Known as the Client Data Repository,
OCTOBER 1995
it provides a Common Object Manager to contain object
(tables, records, fields, etc.) and relationship classes. You
can also use the repository to define extended field attribut-
es (font, picture, color, etc.), so that whenever a field is rep-
resented on a form, its UI object will contain those proper-
ties. Additionally, the repository can maintain a local ver-
sion of a back-end server’s schema, resulting in quicker
access to SQL databases. Additional features of the reposi-
tory include logical database definition (specific tables, not
all tables within an alias or directory) and type casting.

Delayed updates. The new BDE allows you to cache updates
to a database locally and send them in batch mode to any
SQL or local database. Delayed updates allow you to mini-
mize the length of time it takes to lock resources on the
back-end database. Developers familiar with Paradox for
DOS will find this a more powerful implementation of its
CoEdit feature, which was limited to a single record.

New query engine. BDE 3.0 has an entirely new SQL query
engine. In the past, the BDE has always been partially crip-
pled because the query engine was based on QBE. The result
was that Local SQL was limited, because many SQL com-
mands could not be translated by QBE. However, the new
SQL-based query engine conforms to the SQL-92 standard
for local and SQL server tables.

Views. Views, which are essentially named SQL queries,
will be supported in BDE 3.0. Views will function as a
Windows 95 Multithreading

Multithreading is a long way from the pseudo “multitasking” environ-
ment of Windows 3.x. In Windows 3.x, applications can be multi-
tasked to allow multiple applications to be open at once. Windows
3.x activates an application when it receives a message in the mes-
sage queue. Then, the application process continues until it’s com-
pleted. While multitasking is better than singletasking in the DOS
world, it still often leaves you staring at an hourglass cursor while a
process runs to its completion.

Providing a preemptive multitasking environment, Windows 95 leaves
this Windows 3.x architecture behind. The result is that every applica-
tion process can use one or more threads for executing the program.
Windows 95 can manage these multiple threads concurrently. In
other words, Windows 95 can invoke a thread and suspend it at any
time during execution to call up another thread.

A thread is executed in Windows 95 based upon the priority given to
it by the process. (A thread’s priority often changes during its life.) A
priority is a number between 0 and 31 (although 0 is for system use
only) with 31 being the highest priority. When threads are waiting to
be executed, the primary scheduler looks at their priority level and
calls the one with the highest priority first. When two threads have the
same priority level, the first thread is invoked for a time slice, then
suspended while the second thread is called for a time slice, and so
on. To ensure that lower priority threads are not “starved” by these
higher priority threads, a second scheduler (known as the time slice
scheduler) tweaks the priority levels of the lower threads so that they
will be executed as well.
Delphi INFORMANT ▲ 29

Informant Spotlight
table to the user and can be updated. Views on views will
also be supported.

Simple transactions. Developers using Paradox and dBASE
tables will finally be able to use transactions in their applications.
Employing simple transactions, the BDE will provide commit and
rollback capability on these local databases through client-based
transaction logs. Note the use of the word “simple”. This version
will not support crash recovery or other advanced features.

Database Explorer. Not part of the BDE, but related to
Delphi database access, is the new Database Explorer (see
Figure 11), which replaces the limited Database Desktop in
Delphi16. The Database Explorer provides a window for
that hard-to-reach database information in both SQL and
local databases. The Database Explorer allows you to view
and modify aliases, metadata objects (tables, triggers, views,
stored procedures), and user and security information.
Figure 11 (Top): The Database Explorer makes database develop-
Improved Debugger
Debugging your Delphi applications will be much easier
with several debugging enhancements: multi-error passes,
more descriptive messages, and hints and warnings.
Delphi32’s compiler provides multi-error functionality,
such that it will not die on the first error it encounters.
Instead, it continues through the rest of the code to provide
a complete list of compiler errors (see Figure 12). As a
result, you can debug your application more quickly than
before. The debugger also prompts you with hints and
warnings alerting you to potential problems that may exist
in your code, such as uninitialized pointers, unused vari-
ables, or unused function return values.
ment and maintenance much easier. Figure 12 (Bottom): Delphi32
displays far more detailed debugging information than its predecessor.

Richard Wagner is a technical architect for IT Solutions, a leading Delphi consulting firm
in the Boston area. He is author of several Paradox, Windows, and CompuServe/Internet
books and is also a member of Team Borland on CompuServe. Richard can be reached
on CompuServe at 71333,2031 or via the Internet at rwagner@cis.compuserve.com.
Mixing Delphi16 and Delphi32
By now, most of you probably cannot wait to get your
hands on Delphi32. But at the same time, you realize that
as much as you want to use Delphi32 exclusively, you still
will have to continue to develop some 16-bit applications
for users who continue working in Windows 3.x. If that is
the case, be sure to keep Delphi 1.0 on your hard disk,
because you are going to need it. Delphi32 is designed
from the ground up for a 32-bit environment. Therefore,
it will not be able to generate 16-bit code.

Nevertheless, Delphi16 and Delphi32 will happily coexist on
your system. Besides their program files being stored in sepa-
rate directories, the two versions of the BDE use completely
separate DLLs, so there are no versioning issues that will arise
when switching between the two products.

If you do not use any of the new Win32 features, you can
recompile Delphi32 code with little or no modification in
Delphi16. And while you can share unit (.PAS) and form
(.DFM) files, you cannot share project (.DPR) files between
Delphi16 and Delphi32. Therefore, get in the habit of saving
the 16-bit projects you open in Delphi32 to a new name.
OCTOBER 1995
Conclusion
Delphi32 is a convincing upgrade to the 16-bit product
and is technologically far beyond its chief competitors —
Visual Basic and PowerBuilder. If you are moving to
Windows 95, then you will definitely want to add
Delphi32 to your tool belt.

Is Delphi32 perfect? Not yet. Among other things, I’m still
wondering about the enhanced reporting capabilities that
will be in the final product. But on the whole, Delphi32 is
proving that it will be a standard bearer for Win32 appli-
cation development. ∆
Delphi INFORMANT ▲ 30

OCTOBER 1995

OP Basics
Delphi / Object Pascal

By Charles Calvert

Strings: Part III
Delphi Functions, Debuggers, Text Files, and Beyond

Figure 1: The StripFrontChars functio
implies. It strips the characters from th

{------------------------------
Name: StripFrontChars f

Declaration: StripFrontChars(S:
Unit: StrBox
Code: S
Date: 03/02/94

Description: Strips any occurr
that precede a str

function StripFrontChars(S: str
var

S1: string;
begin

while (S[1] = Ch) and
(Length(S) > 0) do

S := Copy(S,2,Length(S) -
StripFrontChars := S;

end;
D uring the past two months, we’ve covered several string-related topics,
including: searching for a sub-string within a string, parsing lengthy
strings, stripping blanks from the ends of strings, and the Object Pascal

functions for manipulating strings. In this last installment of “Strings”, we’ll dis-
cuss the custom StripFirstWord function in depth. We’ll also discuss how to
parse the contents of a text file and then convert the data into fundamental
Delphi types.
Putting StripFirstWord to Work
Last month’s article [in the September 1995 Delphi Informant] introduced the custom
Object Pascal function, StripFirstWord. The following program, called TESTSTR, gives you
a chance to work with the StripFirstWord function. This program takes any sentence you
enter and separates it into a series of individual words that are displayed in a list box. To
avoid any problems that may arise from accidentally prepending spaces before a string, the
TESTSTR program makes use of the custom StripFrontChars function shown in Figure 1.
n does exactly what its name
e front (or beginning) of a string.

unction
 string; Ch: Char): String;

ences of character Ch
ing.
----------------------}
ing; Ch: Char): string;

1);
This routine is quite similar in functionality to the StripBlanks
function, except that it starts at the opposite end of the string
and lets you specify the particular character to cut. [For more
information about the StripBlanks function, see Charles
Calvert’s article “Strings: Part II” in the September 1995 issue
of Delphi Informant.] If you pass it a string and #32, it will
make sure there are no spaces preceding the string.

StripFrontChars works its magic by first checking to see if the
initial character in the string has the same value as Ch. If it does,
it finds the second character in the string and copies it and the
remainder of the string back over the first character of the string.
StripFrontchars thereby accomplishes a task similar to that under-
taken by the second Move statement in StripFirstWord.

The TESTSTR program uses an Edit control, a button labeled
Parse, and a listbox. (The form for the program is shown in
Figure 2, and its code is shown in Listing One on page 35.)
Delphi INFORMANT ▲ 31

OP Basics
TESTSTR uses the OnCreate event to specify a string and pass
it to the BParseClick function. This function uses
StripFirstWord to divide the sentence into individual words
and display each word in a listbox. One of the interesting
aspects of TESTSTR is that it shows how you can place rou-
tines in a unit such as STRBOX and then call them in a neat
and easily readable fashion.
Figure 2: The form for the TESTSTR program.
At this point, you have seen a number of routines for
manipulating strings. There are hundreds of different func-
tions you could write to help you perform certain string-ori-
ented tasks. The ones I have shown here should help you get
started in creating a custom library to refer to when you
need a quick solution for a problem involving a string. The
final version of the STRBOX program contains various
additional string manipulation routines that I have built
over the years. [It is available for download. See end of arti-
cle for details.]
Limiting the Length of Strings
At times it seems foolish to allocate an entire 250-byte
block to deal with a very short string. For instance, you
might have a string that held the first name of the current
user. Furthermore, your input routines may limit the length
of the name the user can enter. For instance, many pro-
grams allow you only 30 characters to enter a name.
Therefore, the string that holds the user’s name need never
be longer than 30 bytes. Any more bytes would be wasted
every time the string is used.

In situations like this, you can limit the length of the string
you declare:

Name: string[30];

This syntax tells the compiler that it needs to set aside only
31 “slots” for this particular string. The first holds the length
byte, and the remaining thirty hold the string. By declaring a
string this way, you save 256-31, or 225 bytes.
OCTOBER 1995
Delphi enables you to declare strings of any length
between 1 and 255. For instance, all of the following are
valid string declarations:

S: string[1];
S1: string[255];
S2: string[100];
S3: string[25];

Strings of certain lengths are declared so often that you might
want to create special types for them:

type
TStr20: string[20];
TStr25: string[25];
TStr30: string[30];
TStr10: string[10];
TStr80: string[80];

Given these declarations, you can write code like this:

var
S1: TStr20;
S2: TStr30;

The syntax shown here can help you save memory without
having to perform much extra work. In fact, the types shown
here are so useful that I have added them to the STRBOX
unit so you can access them easily at any time. I have also
added a few other string declarations that can prove useful
when you are working with files. For example:

DirStr = string[67];
PathStr = string[79];
NameStr = string[8];
ExtStr = string[4];

Unfortunately, when limiting the length of strings using
this technique, you are required to know the length of a
string at design time. Working with PChars and the
GetMem function, it is possible to set the length of a string
at run-time. This means you can make strings that are
exactly long enough to hold the characters stored in them.
You can also declare a pointer to a standard string, pre-
declared by Delphi as a PString, and then allocate the nec-
essary amount of memory needed for it.
Working with Text Files
A text file provides a place for you to store strings. The .PAS
and .DPR source files for your programs are text files. So are
the .OPT and .DSK files that accompany them, as well as the
WIN.INI and SYSTEM.INI files used to configure Windows
3.1. Even the AUTOEXEC.BAT and CONFIG.SYS files are
nothing more than text files.

Delphi provides an extremely simple method for reading and
writing these text files. To get started, you need only declare a
variable of type Text:

var
F: Text;
Delphi INFORMANT ▲ 32

OP Basics
Variable F now represents a text file, and it can be used to
specify where you want data to be read from or written to.
After declaring the file variable, the next step is to associate it
with a particular filename:

var
F: Text;

begin
AssignFile(F,'MYFILE.TXT');
...

It’s traditional to assign the extension .TXT to a text file. Of
course, many files don’t follow this convention. For instance,
.INI files don’t use the .TXT extension, and neither do files
labeled READ.ME. However, most text files do have a .TXT
extension, and this is the accepted way to treat them.

After the assignment statement, the next step is to open the
file with the Reset, Rewrite, or Append routine. The Reset pro-
cedure opens an existing file:

var
F: Text;

begin
AssignFile(F,'MYFILE.TXT');
Reset(F);
...

end;

The ReWrite procedure creates a file or overwrites an existing
file. The Append routine opens an existing file. It does not
overwrite its current contents, but enables you to append new
strings to the end of a file:

var
F: Text;

begin
AssignFile(F,'MYFILE.TXT');
Append(F);
...

end;

There is no simple way to open a text file and insert a string
into it at a particular location. You can create a new file, over-
write an existing file, or append a string onto an existing file.
You can’t easily add a new string in the fourth line of a twen-
ty-line text file. I say you can’t do it easily, but there are ways.
These methods usually involve opening the file in either bina-
ry or text mode, reading its entire contents into an array or
other complex data structure, inserting a string, and then
writing the file back out to disk.

Once you have opened a text file, you can write a string to it
with the Write or WriteLn procedure:

var
F: Text;

begin
AssignFile(F,'MYFILE.TXT');
ReWrite(F);
WriteLn(F,'Call me Ishmael.');
CloseFile(F);

end;
OCTOBER 1995
Notice that the WriteLn statement begins by referencing the
file variable as its first parameter.

The method shown here ends with a CloseFile statement that
must be referenced with a qualifier representing SYSTEM.PAS.
Bugs can be introduced into your program if you forget to call
CloseFile. More specifically, there is an internal buffer associated
with each text file that cannot be flushed if you fail to call
CloseFile. If the buffer isn’t flushed, a portion of the file will
remain in memory rather than being written to disk.
Consequently, it appears that your program is not writing
properly to the file, and programmers can spend a long time
looking for a memory corruption problem when the source of
the trouble is simply failing to call CloseFile.

The SYSTEM file is buried deep in the Delphi run-time
library (RTL). Every Delphi program you create will automati-
cally have the system file linked into it, even if you don’t explic-
itly reference it in your uses clause. Most of the SYSTEM unit
contains assembly language code for elemental routines such as
WriteLn, Assign, ReWrite, Reset, and a few other functions that
have survived since the earliest versions of the Turbo Pascal
compiler. (To learn more about this unit, you can search on
“SYSTEM” in Delphi’s on-line help.) The availability of the
source code depends on which version of Delphi you pur-
chased. It comes with the Client/Server version, but not the
desktop version. If it exists on your system, it would be stored
somewhere beneath the \SOURCE sub-directory. You can also
buy the RTL separately from Borland. If you are a serious pro-
grammer and you don’t have it, I recommend buying it.

To read a string from a text file, you can use the Read or
ReadLn statement:

var
F: Text;
S: String;

begin
AssignFile(F,'MYFILE.TXT');
Reset(F);
ReadLn(F,S);
WriteLn(S);
CloseFile(F);

end;

Notice that this code uses the Reset procedure to open an
existing file, then uses ReadLn to retrieve the first string from
this file. You can also read and write numbers from a text file.
For instance, the following code is entirely legal:

var
F: Text;
S: String;
i: Integer;

begin
AssignFile(F,'MYFILE.TXT');
ReWrite(F);
S := 'The secret of the universe: ';
i := 42;
WriteLn(F,S,i);
CloseFile(F);

end;
Delphi INFORMANT ▲ 33

OP Basics
This code writes the following line into a text file:

The secret of the universe: 42

If you had a text file with the following contents:

10 101 1001
20 202 2002

you could read the first line from this file with the following
code:

var
F: Text;
i, j, k: Integer;

begin
AssignFile(F,'MYFILE.TXT');
Reset(F);
ReadLn(F,i,j,k);
CloseFile(F);

end;

The code shown here would read the numbers 10, 101, and
1001 from the file. If you wanted to read both lines from the
file, you could write:

var
F: Text;
i, j, k, a, b, c: Integer;

begin
AssignFile(F,'MYFILE.TXT');
Reset(F);
ReadLn(F,i,j,k);
ReadLn(F,a,b,c);
CloseFile(F);

end;

You can use a function called EOF to determine if you are at
the end of a text file. For instance, if you had a file that con-
tained several hundred lines of numbers as those shown in the
small file listed above, you could read the entire file with code
shown in Figure 3.

The EASYFILE program demonstrates how to use the TTextRec
structure to determine a file’s name, and if a file is open for
input, open for output, or closed. Specifically you can typecast a
variable of type Text so that you can test its state, as shown here:
OCTOBER 1995

Figure 3: Using the EOF function to find the end of a file.

var
F: Text;
i, j, k, Sum: Integer;

begin
AssignFile(F,'MYFILE.TXT');
Reset(F);
while not EOF(F) do

begin
ReadLn(F, i, j, k);
Sum := I + j + k;
WriteLn(F,'i + j + k := ', Sum);

end;
CloseFile(F);

end;
var
F: Text;

begin
if TTextRec(F).Mode := fmClosed then

OpenTheFile;
end;

TTextRec is in the on-line help, the Mode constants are
declared in SYSUTILS.PAS as follows:

fmClosed = $D7B0;
fmInput = $D7B1;
fmOutput = $D7B2;
fmInOut = $D7B3;
Conclusion
In this article you’ve learned the basics about text files. One
of the most important points to remember is that you can
open a file one of three ways:
• ReWrite opens a new file or overwrites an existing file.
• Reset opens an existing file for reading.
• Append opens an existing file and enables you to append

text to the end of it. If the file does not exist, an error
condition results.

Visual programming in Delphi is a complete package. That
is, you can create an entire application and distribute it,
without writing a single line of code. Does this mean that a
lay person can turn on a computer, fire up Delphi, drop a
couple of components on a form, and create an effective
application? The answer to this question, clearly, is “No.”

The robust nature of Delphi stems from both its components
and Object Pascal code. Developers must be able to effective-
ly use their coding skills to exploit the capabilities of any pro-
gramming environment. Understanding strings as well as the
nature of text files will help enable programmers to build
Delphi applications that serve their clients’ needs. ∆

This article was adapted from material for Charles Calvert’s
Delphi Unleashed (SAMS, 1995).

The demonstration programs — TESTSTR and EASYFILE, as
well the unit files STRBOX and MATHBOX — referenced in
this article are available on the Delphi Informant Works CD
located in INFORM\95\OCT\CC9510.
Delphi INFORMANT ▲ 34

Charlie Calvert works at Borland International as a Developer Relations Manager for
Languages. He is the author of Delphi Programming Unleashed, Teach Yourself
Windows Programming in 21 Days, and Turbo Pascal Programming 101. He and his
wife Marjorie live in Santa Cruz, CA.

OP Basics
Listing One — The TESTSTR program

unit Main;

interface

uses

WinTypes, WinProcs, Classes, Graphics, StdCtrls,

Controls, Forms;

type

TForm1 = class(TForm)

BParse: TButton;

Edit1: TEdit;

ListBox1: TListBox;

procedure BParseClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

TestStr: string;

end;

var

Form1: TForm1;

implementation

uses

StrBox;

{$R *.DFM}

procedure TForm1.BParseClick(Sender: TObject);

var

S: string;

begin

ListBox1.Clear;

TestStr := Edit1.Text;

repeat

TestStr := StripFrontChars(TestStr, #32);

S := RemoveFirstWord(TestStr);

if S <> '' then

ListBox1.Items.Add(S);

until S = '';

if TestStr <> #32 then

ListBox1.Items.Add(TestStr);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

TestStr := 'In the long sleepless watches of the night';

Edit1.Text := TestStr;

end;

end.

End Listing One
OCTOBER 1995 Delphi INFORMANT ▲ 35

At Your Fingertips
B Y D A V I D R I P P Y

Delphi / Object Pascal

Figure 2: This code is attached to the OnKeyPress event handler for
the edit fields.

f you don’t know where you’re going, any path will get you there.

— Unknown

I

How can I program J to act like F when pressed?
For applications that require a great deal of data-entry, users
will often request that J behave like F and automatically
advance the cursor to the next field when pressed. At first
glance, this may seem like a lot of programming, but with a
little help from the Windows API, we can achieve this behav-
ior in one line of code.

The sample form in Figure 1 contains six edit fields. Our goal
is to provide the user with the ability to maneuver between the
fields by simply pressing J. First, select each of the edit
fields, and double-click on the OnKeyPress event in the Object
Inspector. Now add the code snippet found in Figure 2 to the
OnKeyPress event handler. Because we have selected every field
object, this method will trigger regardless of the field we are
positioned on.

The code first interrogates the procedure’s Key parameter to
see if the key pressed was VK_RETURN, which is the
Windows Virtual Key constant for J. Since the value of the
constant is an integer, we must first convert it to its associated
Character value with the Chr function. Alternatively, you
OCTOBER 1995

Figure 1:
Pressing J
will maneuver
the cursor
between these
six edit fields.
When you
move the focus
to the Close
button and
press J, you
will exit the
form.
could use “#13” instead of performing a type conversion, but
using the virtual key constant makes the code easier to read.

If J was pressed, the Perform procedure is executed to send
the Windows message WM_NEXTDLGCTL back to the
application. The WM_NEXTDLGCTL message (Windows
Message, Next Dialog Control) instructs the application to set
focus on the next dialog box control on the form. In this case,
the next control is the next Edit field whose TabStop property
is set to True. That’s it!

While this is a relatively simple example, it illustrates how well
Delphi integrates with the Windows API. It’s a powerful combi-
nation. — Brendan Delumpa, Prescription Solutions

How can I reduce the size of my Delphi executable?
You’ve just completed quite an elegant application, but wound
up with a really hefty executable. Here’s how can you slim down
that overweight .EXE.

Choose Project | Options from Delphi’s menu to invoke the
Project Options dialog box. Now click on the Linker tab to
display the page of linker options (see Figure 3). Notice a
Delphi INFORMANT ▲ 36

Figure 3: The Linker page of the Project Options dialog box.

Figure 5: The Printing dialog box looks out of place on this form.

Figure 6: Select Form1 in the
Object selector and then set the
form’s FormStyle property to
fsStayOnTop.

At Your Fingertips
group titled EXE and DLL options. The first checkbox,
Optimize for size and load time, will compress the size of
your executable, resulting in a quicker load time.

However, the program’s link time remains the same. What is
different is that Delphi’s IDE runs the final executable through
the W8LOSS.EXE program before it finishes compiling and
linking. Interestingly, you can run W8LOSS at the DOS
prompt on a program that was compiled with the debug infor-
mation, and it will strip that information from the .EXE.

Although it’s not essential to check the Optimize for size and
load time option during design time, you should always check it
when producing the final .EXE.

The second checkbox, Include TDW debug info, inserts
information used by the Turbo Debugger for Windows into
the executable. [This discussion does not address the debug-
ger built into Delphi’s IDE. Instead, the reference is being
made to the separate Turbo Debugger program that ships
with Delphi.] You must check this option if you want to use
the Turbo Debugger, so leave it checked during development.
Although the debug information does not affect the speed of
the executable, it does significantly increase the file’s size.
Therefore, when it’s time to create your final .EXE, you
should definitely uncheck this option.

Figure 4 shows the effect of compiling a sample application
with the various Linker options checked or not. As you can
see, these options can make quite a difference. — Russ Acker,
Ensemble Corporation
OCTOBER 1995

Options Yes No

Include TDW debug info? 3,407,450 bytes 2,782,720 bytes

Optimized for size? 2,632,192 bytes 3,256,922 bytes

Figure 4: As you can see, the difference in selecting these options will
have a dramatic affect on the size of your executable file.
How can I suppress the dialog boxes that appear when
using packages such as Crystal Reports?
When creating multi-media applications, the last thing you
want the user to see is a Windows-style dialog box, similar to
Figure 5. Not only do these dialog boxes increase the odds of
the user crashing the system, it also appears out of place on the
form. Unfortunately, many third-party products such as Crystal
Reports do not give you the option of suppressing these kinds
of dialog boxes. However, with Delphi we can solve this prob-
lem in zero lines of code. How’s that for efficiency!
By simply changing the
FormStyle property of the Form
to fsStayOnTop as seen in Figure
6, we cause the form to always
“cover” the Printing dialog box.
The Printing dialog box is still
created, but it no longer inter-
feres with our otherwise beauti-
ful application. ∆
— David Wilson

The demonstration project ref-
erenced in this article is avail-
able on the Delphi Informant
Works CD located in
INFORM\95\OCT\DR9510.
Delphi INFORMANT ▲ 37

David Rippy is a Senior Consultant with Ensemble Corporation, spe-
cializing in the design and deployment of client/server database
applications. He has contributed to several books published by Que,
and is a contributing writer in the Paradox Informant. David can be
reached on CompuServe at 74444,415.

OCTOBER 1995

Viewpoint
Delphi / Object Pascal

By Vince Kellen

Why Do Programmers
Love Delphi?
One Developer’s Opinion
I ’ve been doing some research lately. Nine out of ten programmers prefer
Delphi — and the tenth one hasn’t seen the product yet.

It seems that everywhere I go, everyone is asking about Delphi. Clearly I’ve underestimated
Delphi’s appeal. Everyone loves it. The programming staff at Kallista is no different. Each staff
member has asked me for a Delphi project. If I don’t have one, the programmer sulks, whines, and
walks away. Then I threaten the programmer with a Paradox 3.5 for DOS maintenance project.
That stops the whining, if not the sulking.

It’s affected my family as well. A relative of mine recently attended some corporate training in
mainframe programming. The instructor said that for programmers today, Delphi is where it’s at.
He (the relative) called and asked me a bunch of questions about Delphi. He now prefers Delphi
and he hasn’t seen it!
What’s Going On?
I also prefer Delphi, although I don’t understand all the reasons why. Of course I can go on about
everything everyone knows about Delphi: OOP, .EXEs, source code, great UI, blah, blah, blah.
But I’m convinced there’s a deeper, more subtle reason why programmers prefer Delphi.

So now, when I host Delphi SIG meetings, speak at conferences, or talk to clients, I ask all the
Delphians out there what they like about Delphi. The responses are predictable:
“It’s object-oriented.”
“It’s a compiler.”
“It’s fast.”
“It’s got great components.”
“It produces .EXEs.”
“It’s got source code.”
“It’s got database components built in.”
“It’s Pascal.”
“It’s not a Microsoft product.”

Yawn. These can hardly be the reasons so many programmers’ hearts palpitate when they use
Delphi. Or why so many swoon when they talk about it. They really do swoon. I’ve seen it. I’ve
even heard of some Delphians fainting in the middle of a heavy Delphi conversation. Honest.

No, the reason must be something else.
Delphi INFORMANT ▲ 38

Viewpoint
Meeting the Challenge
To understand the reason, you must ask “Why do programmers
like to program?” For many people, programming is not just a
job or a hobby, it’s an adventure. The love of programming lies
in the challenge of it. After all, why do people no longer pro-
gram in old languages? Because it’s boring; there’s no challenge
in it any more. As soon as a programmer masters an environ-
ment, he or she invariably wants to learn another one.

For any activity to sustain life-long enjoyment, that activity must
be continually challenging. Mihaly Csikszentmihalyi, in his book,
Flow: The Psychology of Optimal Experience, describes the concept
of flow, which many programmers routinely experience. Flow
refers to a state of mind where enjoyment rules. Where time
seems to stand still, yet fly. Where there are no distractions.
Where the mind is so consumed entirely in the task at hand that
it is in another world. For programmers, that world is cyberspace
and many of our spouses know all too well what cyberspace is.
For most of them, it’s as good as the neighborhood bar or pool
hall. Or an affair. Csikszentmihalyi affirms that to maintain flow
year after year, the activity must remain challenging. And if the
programmer is improving, the challenge needs to increase as well.

In this regard, Delphi fits nicely. People new to programming
can use it and begin the challenge of learning basic programming
concepts. For example, an employee of one of our clients —
without any programming background — has started using
Delphi to create small applications with little code. And one of
the developers at Kallista is teaching his 11-year-old daughter
how to use Delphi.

For programmers new to object-oriented programming, Delphi
presents a new challenge. There’s plenty to learn for program-
mers new to database programming as well. Experienced pro-
grammers will find creating components interesting, challenging,
and rewarding. Programming wizards can read the VCL source
code and try to find weaknesses, inadequacies, or problems.
Windows wizards can dig deeper into Delphi to understand how
it interacts with the Windows API and the Windows event
model. They can exploit that knowledge to build more sophisti-
cated components and applications. For all of these people, there
is enjoyment in the challenge. In other words, Delphi presents a
continual challenge for all sorts of programmers. But simply pro-
viding programmers with a continual challenge does not make
Delphi a favorite. After all, even many Paradox for Windows
programmers prefer Delphi, and they’ve been challenged for
quite some time now.

No, the answer must lie somewhere else.
Into the Fray
Programmers prefer to be close to, or in the midst of, the strife.
Sooner or later, programmers resent having other programmers
shield them from battle scenes. While Delphi does shield pro-
grammers from the battles of the Borland Database Engine and
the Windows API, with the VCL source code at hand, Object
Pascal programmers feel very close to the battle.
OCTOBER 1995
In fact, there’s something nice about using the same tool that
Borland programmers used to build Delphi. It’s like wearing
King Arthur’s battle gear. Or wearing Ted Williams’ uniform at a
softball game. Or holding a hockey stick that Wayne Gretzky
used. It’s as if you have become The Great One, gliding down
the ice, past the onrushing defenders, and scoring. It connects
you with the game, and the challenge is in the game.

Having the source code and being close to the battle creates all
sorts of illusions. Besides running faster than other environ-
ments, Delphi feels — well — “thinner”. There’s less magic
between you and the CPU. When you see a form run it appears
to run faster because you’ve read the code that makes it run.
Borland isn’t saying “Never mind that man behind the curtain.”
Instead, they have opened the curtain.

I’ve posed this scenario to many Delphians. They shrug and say
“I don’t know.” They’re skeptical. Clearly the answer to my basic
question lies elsewhere.
It’s the Tools
Perhaps it’s the tabbed Component Palette. This tool is so much
better than its equivalent toolbox in Visual Basic that I’m tempt-
ed to ascribe all programmer’s affection for Delphi to it. It neatly
and compactly presents several dozen components. No more
“icon block” where you stare at the overstuffed VB toolbox win-
dow wondering “where oh where is that component?”
Sometimes I think this saves me an hour a day.

Or perhaps it’s the Object Inspector with the tabbed properties
and events pages — in sorted order, no less! What a novel con-
cept. With lists of properties in alphabetic order, it’s much easier
to find the property you want to change. Sometimes I think this
saves another half hour a day. And when you can find a property
quickly, you can spend more time thinking about your program.

I have posed these two significant improvements in the typical
programming environment as the reason for programmer’s rapid
acceptance of Delphi. Those who listened to me shrugged their
shoulders, unsure if that was the reason, or concerned that I was
out chasing windmills again. Evidently, the answer must lie
somewhere else. My quest continued.
Must Be the Language
Perhaps it’s Object Pascal. It’s ironic that many early Delphi naysay-
ers criticized Borland for using Pascal. Borland should have used C
or some form of Basic, they argued. On the other hand, I’ve had
Delphians claim that Borland’s use of Pascal was a bold and coura-
geous move. I’m not so sure. Each time I speak about Delphi, I ask
how many people in the crowd have programmed in Pascal. About
half raise their hands. Clearly Borland was on target with Pascal.

And the language is nice. The syntax is clear and elegant. And
except for a few areas, it’s easy to teach anyone with C or
Visual Basic experience the Pascal language. Its syntax for
handling object-oriented programming is delightfully
straightforward without sacrificing power.
Delphi INFORMANT ▲ 39

Viewpoint
Is this what attracts thousands? Many Delphi fans answer in the
affirmative. But this time I’m skeptical. Tens of thousands didn’t
rush to the computer store to buy the latest upgrade to Borland
Pascal with Objects. The answer must be behind another veil.
Vince Kellen is Vice President of Kallista, Inc., a leading provider of database applica-
tion consulting, add-on products, and training. Vince is co-author, with Bill Todd, of
Creating Paradox for Windows Applications [New Riders Publishing , 1995]. His latest
book, also with Bill Todd, is Delphi: A Developer’s Guide [M&T Books, 1995]. Vince is
also a member of the IEEE and ACM. He can be reached at Kallista at (312) 663-
0101, or on CompuServe at 70511,3511.
It’s the Environment
Maybe it’s having data in tables visible in design mode. How
many times have you accessed a table and spent hours hammer-
ing out code, only to realize you’ve selected the wrong table? Or
had to task switch to view the table to make sure it was correct?

By my reckoning, that’s saved me another half hour a day.
After all, the more information visible to the programmer, the
faster the programmer can work. Interruptions are a major
impediment to programmer productivity, even if the interrup-
tion is simply to view records in a table. If the programmer’s
mind is taken off the algorithm at hand, flow is diminished
and time evaporates.

Maybe it’s having the Local InterBase engine (for the
Client/Server edition folks) built right in. Adding a client/server
dimension to the product and making that dimension immedi-
ately accessible opens up new areas of programming for those
who haven’t had the exposure. And InterBase has great support
for the ANSI SQL-92 standard so the skills learned here are
transferable to other environments. Perhaps so many bought
Delphi to get up to speed in the client/server game — or ahead
of the game. I just don’t know.
OCTOBER 1995
May Be Habit Forming
I talked with a member of the Borland Paradox team. He asked me
what I thought of Delphi. I said that application development seems
to go faster in Delphi than in Paradox. He expressed concern. After
all, it is his product — Paradox — that I slighted. He asked why. I
was stumped, I wasn’t exactly sure. In fact, it was this conversation
that started me on my quest. I told him I thought the rapid pro-
gram/compile/test cycles in Delphi were faster than in Paradox. Or
that having table data visible in design mode made things move
faster. Or the complied EXEs, and so on. Blah, blah, blah.

What I forgot to tell him was that perhaps it was because the
Delphi environment is just more addictive than other environ-
ments. That’s it! Maybe the Delphi environment is addictive in
some way. Maybe it’s so popular because it’s like a drug, except it’s
legal and a heck of a lot cheaper.

I’m still not sure exactly why Delphi is so popular. Sometimes I
think the answer to that question is staring me right in the eyes.
There has to be some reason, don’t you think? ∆
Delphi INFORMANT ▲ 40

OCTOBER 1995

Sights and Sounds
Delphi16 / Object Pascal / Windows 95

By Kenn Nesbitt

See-Through Images
A Windows 95 Color Scheme Work-Around

Delphi16 running on Windows 95 wi
selected.
O ne of the things you will notice as you begin playing around with
Delphi16 (i.e. Delphi 1.0) in Windows 95 is that many of the new
color schemes replace the default ButtonFace color. For example,

although the Windows Standard color scheme has the same light gray buttons
we are so familiar with, the Eggplant color scheme has green buttons and the
Brick color scheme has gold buttons.
If your programs count on the fact that clBtnFace will
always be light gray (i.e. clSilver), you may end up
with very ugly programs when a user changes color
schemes. Figure 1 shows an example of the problem.
The gray rectangle would not appear if the form’s
background color were gray.

The code example in Figure 2 shows an easy way to
create transparent images on a form. In other words,
Figure 1: This is how a standard
TImage control may appear when the
user changes the default button face
color.

th the Eggplant color scheme
images whose background
color is the same as the
color of the form.

Here’s how it works. First,
you place TImage controls
on a form and load
bitmaps into them, just as

you normally would. Next, change the Visible property of the
control to False. This prevents the image from initially dis-
playing.

Finally, add a procedure to the form to tell it to copy the con-
tents of a TImage to the canvas of the form, replacing the
specified color in the bitmap (in this case clSilver) with the
background color of the form itself. In the form’s Paint proce-
dure, you will need to call this new procedure for each TImage
control that needs a transparent background color.
Delphi INFORMANT ▲ 41

OCTOBER 1995

procedure TForm1.PaintImageTransparent(Image: TImage);
var

rectCanvas, rectBitmap: TRect;
begin

{ Get the size of the bitmap }
rectBitmap.Top := 0;
rectBitmap.Left := 0;
rectBitmap.Bottom := Image.Picture.Bitmap.Height;
rectBitmap.Right := Image.Picture.Bitmap.Width;

{ Get the location of the TImage on the form canvas }
rectCanvas.Top := Image.Top;
rectCanvas.Left := Image.Left;
rectCanvas.Bottom := rectCanvas.Top + rectBitmap.Bottom;
rectCanvas.Right := rectCanvas.Left + rectBitmap.Right;

{ Set the canvas' brush color to the
background color of the form }

Canvas.Brush.Color := Color;

{ Copy the contents of the TImage to the form's
canvas replacing the color clSilver with the
canvas' brush color }

Canvas.BrushCopy(rectCanvas,Image.Picture.Bitmap,
rectBitmap,clSilver);

end;

procedure TForm1.FormPaint(Sender: TObject);
begin

{ Every time the form paints itself, redraw this image }
PaintImageTransparent(Image1);

end;

Figure 2: The custom PaintImageTransparent procedure and the Paint
procedure that calls it.

gray color of the image
rent.

Sights and Sounds
The result is a form that
looks like the one shown
in Figure 3. As you can
see, using this approach
will cause your applica-
tions to display correctly,
even when users start try-
ing out the new
Windows 95 color
schemes. ∆

The demonstration project
referenced in this article is
available on the Delphi
Informant Works CD
located in INFORM\95\OCT\KN9510.

Figure 3: The
is now transpa
Delphi INFORMANT ▲ 42

Kenn Nesbitt is an independent Windows and database consultant, formerly with
Microsoft Consulting Services. He is a Contributing Writer to Data Based Advisor,
the Visual Basic columnist for Access/VB Advisor magazine, a regular contributor
to the German magazine Office and Database, and co-author of Power Shortcuts:
Paradox for Windows. You can e-mail Kenn at kennn@netcom.com, or
CompuServe 76100,57.

Component Create
Custom Components Are Closer, but Still More Than a Click Away

New & Used
b y D o u g l a s H o r n

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;

type
Tcomp = class(TCustomCheckBox)
private

{ Private declarations }
protected

{ Protected declarations }
public

{ Public declarations }
Component Create version 1.0 by Potomac
Document Software helps automate the
process of designing Delphi custom compo-

nents. Component Create helps walk users through
the process of creating and coding various compo-
nent parameters. While it still leaves plenty of work
to the developer, Component Create does provide a
solid framework to build on. Component Create is
one of the first Delphi-specific tools to hit the mar-
ket. Unfortunately, it is not as thoroughly integrated
with Delphi as users might wish.
Figure 1: The Pascal code generated by Delphi’s native Component
Expert automates few component tasks, leaving the component writer
with the proverbial blank page.

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [Tcomp]);
end;

end.
Creating Components
The usual way to create a custom component is to use the
Delphi Component Expert by selecting File | New Component.
The Component Expert requests a Class Name, Ancestor Type,
and Palette Page for the new component, then creates a very
rough framework for the new component. It adds empty private,
protected, public, and published statements as Delphi does with
any new object, but beyond these, the Component Expert adds
fewer than ten lines of useful code (see Figure 1). From this
point, users are on their own.

Component Create is a much more “expert” Expert. To begin
with, where the Component Expert lists only the names of vari-
ous component classes to use as the ancestor — or parent —
class, Component Create includes somewhat more descriptive
explanations, although they could still be improved (see Figure
2). Component Create also provides a hook into Delphi Help’s
component class index so that users can get more details. And
even after the parent class is selected, Component Create allows
users to easily choose a new one.

Once the user selects a parent class for the new component,
Component Create presents its main interface: a five-page note-
book that allows users to access any of the component’s parame-
OCTOBER 1995
ters. Each of the notebook’s pages — Properties, Methods,
Events, and Variables — allow the user to add, delete, and modi-
fy the corresponding parameters. In addition, the Main Page
controls general information such as parent class, unit name, and
the palette onto which the new component will be installed. In
other words, the Main Page handles all the same information as
the Component Expert, as well as various fields for descriptions,
copyright statements, and units to include. (All standard units
are added automatically. Advanced users may wish to remove
unnecessary units, which can lead to bloated component code.)
Delphi INFORMANT ▲ 43

New & Used

Figure 2: Component Create’s Select Parent Class dialog box offers
descriptions of various component classes to help users make the most
appropriate choice.
Component Create allows users to add or delete component
parameters at any time. This eliminates the need to, say, define
all properties before moving on to methods. And because a list
of the parameters is always displayed on each page, it is difficult
to accidentally forget an important variable or property.

The property, method, and variable lists that Component Create
displays do not, however, show inherited properties. Inherited
events can be shown and overridden, but otherwise, if the user
wishes to use or override one of the inherited methods or vari-
ables, the parameter must first be added to the list (see Figure 3)
Figure 4: Component Create’s code editor provides comments to help
users understand where to add their event handlers and what types of
functions need to be addressed.

Figure 3: Component Create’s main interface is a tabbed-notebook
with Main, Properties, Methods, Events, and Variables Pages. Though
the component will include all parameters of its parent class, only
those which have been added to the componeAnt will be listed on
these pages.
Users can set the default value of inherited properties, but can-
not alter their behavior. This is not a limitation of Component
Create, but of the component creation process itself. Component
Create just keeps users from trying to do the impossible. The
general rule is: If you need to alter or remove an inherited prop-
erty, start further up the inheritance tree.

Every parameter a user can add also requests a description. These
descriptions are used to comment the component code. This is a
nice feature, as it keeps the completed code easy to follow.
OCTOBER 1995
Excessive commenting can be disabled simply by leaving the
description field blank.

Once the user adds a property or variable, the data type is also
required. This can be set to any possible type. One of
Component Create’s most convenient features is that it automat-
ically handles initialization and destruction of object types such
as TBitmap or TFont. This is a real headache-saver, as failing to
properly destroy any aspect of these objects can bring on a
Windows general protection fault.

Once a property, method, or event has been added and defined, the
code pertaining to it can be edited via Component Create’s code
editor. This is where the real work begins. Though Component
Create adds code comments to suggest what types of functions a
given event handler should include (see Figure 4), it does not help
generate that code.
Of course, generating code is the developer’s responsibility, but
potential Component Create users should be aware that this is
the boundary of the program’s assistance. The full extent of
Component Create’s assistance is setting up an outline for the
new component’s code based on the properties, methods, and
events that the user specifies. Anyone who thinks that
Component Create is going to hold their hand through the
entire process of creating a new component probably owns a lot
of Florida swampland and perhaps even the Brooklyn Bridge.

Odds are, Component Create users are going to end up editing a lot
of code. To do this, they must use Component Create’s code editor.
Compared to Delphi’s robust code editor, Component Create’s
leaves quite a lot to be desired. First, keywords and comments are
not automatically formatted as they are in Delphi’s code editor. Also,
Component Create’s code editor does not allow users to set prefer-
ences, such as typeface and size.

On the other hand, Component Create’s code editor does provide
extended commenting in many circumstances to help explain what
types of programming tasks should be addressed by various event
handlers. The code editor also allows users to open existing .PAS
files to cut and paste blocks of code into the component definition.
Delphi INFORMANT ▲ 44

New & Used
One final characteristic of the code editor is that it only displays
code from the section currently being edited. Some users will
find this keeps them focused and protects them from being over-
whelmed by the volume of code a component may require.
Others, however, will become frustrated with the inability to
jump to various sections of code as new ideas strike them.
Component Create version 1.0 is a
code generator that helps Delphi
developers create their own compo-
nents. Though it can handle many
phases of component generation,
Component Create is most useful in
creating outlines that can be
fleshed out in Delphi’s code editor.
The program would be improved by
tighter integration with Delphi, but
will nevertheless be a useful tool to
many component writers.

Potomac Document
Software, Inc.
P.O. Box 33146
Washington, DC 20033-0146
Phone: (800) 628-5524
Fax: (202) 244-9065
Price: US$179

Douglas Horn is a freelance writer and computer consultant in
Seattle, WA. He specializes in multilingual applications, par-
ticularly those using Japanese and other Asian languages. He
can be reached via CompuServe at 71242,2371.
Completing Components
Component Create does an admirable job of automating key
stages of the component creation process. This is especially true at
the early stages of component definition. Unfortunately, towards
the end of the process, Component Create tends to lose some of
its steam. While users can continue to work in Component
Create almost to the stage of installing the completed component
on Delphi’s Component Palette, few will choose to do so. The
bulk of Component Create users are more likely to define all
component parameters (properties, methods, events, and vari-
ables), let Component Create generate a component outline, and
then switch to back to Delphi for the real programming.

The main problem here is Component Create’s code editor. As
mentioned above, it does not allow users to easily skip from one
block of code to another. Also, some procedures, such as
AutoInitialize and AutoDestroy, it hides completely. More frus-
trating still, the code editor makes no provision for syntax check-
ing. So anyone who actually tries to develop a component from
start to finish in Component Create is likely to have their com-
ponent file opened in Delphi anyway while trying to install it to
the Component Palette — most likely because they forgot a
semicolon somewhere along the line.

Performing the last half of the component coding from Delphi
saves a lot of time and frustration by taking advantage of
Delphi’s superior code editor. As Component Create does not
naturally save its files in Delphi format, users must first generate
a Pascal .PAS file using Component Create’s Generate |
Code(.PAS) menu command. (Component Create also saves files
in its own component definition (.CD) format) This .PAS file
can then be opened and edited in the Delphi code editor.

This lack of integration is the only serious disappointment in
Component Create. Aside from linking to Delphi’s help file,
Component Create provides no communication with Delphi
whatsoever. New components must be saved to a .PAS file to be
either edited or installed onto the Delphi Component Palette.
Component create also offers no direct support for changing the
bitmap image used to represent the component. Future versions
would definitely benefit from tighter integration with Delphi.
For example, using the Delphi code editor would eliminate the
shortcomings of the current editor. And the users would certain-
ly appreciate a way to check for errors as they went along.

But even developers who only use Component Create to gener-
ate component outlines will find that they save time and effort.
Though it should be simple, the process of defining and outlin-
ing all the various parameters of a component can often be more
frustrating than writing the actual event handlers themselves.
OCTOBER 1995
Other Considerations
In general Component Create is a well put-together program. It
installs easily, allowing the user to select what directory and
Windows program group to use. The default program group is
Delphi, which keeps Component Create in the same (albeit
crowded) group as all the other Delphi utilities.

Component Create’s documentation is a bit sparse, and its robot-
ic tone brings to mind manuals created using an automated doc-
umentation generator. At thirty-two small pages, Component
Create’s manual is half the length of the manual for a typical
VCR. (But then it’s a lot easier to program Delphi components
than it is to program a VCR.) The on-line help file is an exact
clone of the paper manual.

Needless to say, then, that Component Create’s documentation does
not delve into the hidden secrets of creating Delphi components.
Besides a straight explanation of Component Create’s controls, it
does touch on a few simple component development issues, such as
creating components with sub-components. On the whole, however,
this is not the program to buy to learn how to create components.
While Component Create will be beneficial to those with any level
of component writing experience, those who have a strong grasp of
component writing techniques will receive the most satisfaction.

Component Create does include five pre-written component
definitions (.CD files) for users to study. These offer some
insight into Component Create basics, but their use is limited.
Again, the sample components included with Delphi
(C:\DELPHI\SOURCE\SAMPLES) are better learning aids.
Conclusion
But Component Create never promises to
teach users how to program components, and
this is a bit unfair to expect of it. It does
deliver on what it promises — extending
automatic component code generation to
provide component developers with a fuller
framework on which to operate. Savvy users
will find Component Create most adept at
creating component outlines that help to ease
the busywork and assure that nothing simple
is left out. This is valuable stuff, but from
that point, users are better off to switch to
Delphi to handle the real programming. ∆
Delphi INFORMANT ▲ 45

[re]Structure
Complete Programmatic Control of Paradox Tables

New & Used
b y B i l l T o d d
I f you use Paradox tables in your Delphi applica-
tions, you’ve probably noticed that Delphi’s abili-
ty to create Paradox tables or change their struc-

ture is very limited. You can create a table, and
define the fields and indices to include in the table’s
structure using the CreateTable method of the TTable
class. However, there is no way to specify any of the
table’s other properties, such as validity checks,
table lookups, referential integrity, or passwords.
[re]Structure comes complete with a Delphi demonstration project.
What You Couldn’t Do
The same limitations apply to changing the structure of a table.
You can add and drop fields and indices, but that is all. You can’t
move a field to a different location in the table’s structure, nor
can you add, delete, or change any of the other properties
unique to Paradox tables.

These limitations can be very annoying in many situations. For
example, suppose you need to send users an update to your
application. And as part of the update process you need to
change the structure of one or more tables without disturbing
the data they contain.
You Now Can
[re]Structure from TrayMar Software removes these limitations.
Using [re]Structure you can:
• Add, drop, move, or change fields
• Add, drop, and modify valchecks
• Add, drop, and modify table lookups
• Add, drop, and modify primary and secondary indexes
• Add, drop, and modify referential integrity
• Add, drop, and modify master and auxiliary passwords
• Modify the table level (version)
• Modify the table’s language driver
OCTOBER 1995
All the options for these operations are fully supported. For
example, you can specify Help and Fill or Fill All Corresponding
when you add or change a table lookup. Also, all the master and
auxiliary password options are available when you add or change
passwords. You can even specify the Pack option when you
restructure a table.
Installation
The installation process consists of two steps. First you must
copy the RESTRUCT.DLL file to your Windows directory
(i.e. the directory that will be your working directory when
your program is running, or to a directory on your DOS
path). Although you can call the RESTRUCT.DLL functions
directly, it’s easier to use the Restructure component by
adding RESTRUCT.PAS to the Visual Component Library.
By default the component appears on the Data Access page of
the Component Palette.
Delphi INFORMANT ▲ 46

Bill Todd is President of The Database Group, Inc., a Paradox consulting firm based
near Phoenix. Bill is co-author of Creating Paradox for Windows Applications (New
Riders Publishing, 1995), Paradox for Windows Power Programming (Que
Corporation, 1994), and Delphi: A Developer’s Guide (M&T Books, 1995). He is also
a member of Team Borland supporting Paradox on CompuServe and a speaker at all
Borland database conferences. Bill can be reached at (602) 802-0178, or on
CompuServe at 71333,2146.

[re]Structure, from TrayMar
Software, removes the limitations
associated with creating or changing
the structure of Paradox tables. It
allows developers to add, drop or
modify valchecks, table lookups, pri-
mary and secondary indexes, refer-
ential integrity, and master and
auxiliary passwords. It also allows
for adding, dropping, moving or
changing a field, and modifying the
table level and language driver.

TrayMar Software
1254 Middlefield Road
Palo Alto, CA 94301-3346
Phone: (415) 323-0910
CompuServe: 75564,1042
Price: US$149.95

New & Used
Using the DLL
For all of its power, RESTRUCT.DLL is surprisingly easy to use.
You simply fill a command table with all of the operations you
want performed and call the DoRestruct method. This “com-
mand table” approach has a number of advantages. First, you
can include different operations on different tables in a single
command table. For example, you could create two tables and
define a referential integrity relationship between them in a sin-
gle command file. You can also create as many command tables
as you need and use them at will since you can pass the com-
mand table name as a parameter to the DoRestruct method.

Another powerful feature of the command table is that you
can leave the name of the table an operation should be per-
formed on blank and specify it dynamically before you call
DoRestruct. This means you can create a command table and
use it on any table you wish. If errors occur during any opera-
tion, DoRestruct creates an error table in the user’s private
directory that describes them.

To make it easy to build command tables, the Restructure com-
ponent includes a method that enumerates information about an
existing table to a command table. The Operation field in the
command table is filled with a dummy value that does nothing if
the command table is executed. All you have to do is change the
Operation field in the command table for those fields you want
to change in the target table.
OCTOBER 1995
Safe and Effective
The author of RESTRUCT.DLL was a
member of the Paradox for Windows
development team for all versions from
1.0 through 5.0, and he wrote the DLL
using documented Borland Database
Engine (BDE) functions. Since all table
manipulations are done with BDE calls,
you can be confident that [re]Structure is
safe to use.

If you are tired of tedious work-arounds
that result in poor performance when
you need to restructure tables,
[re]Structure is the tool you’ve been
waiting for. ∆
Delphi INFORMANT ▲ 47

TextF i le
For a Few Dollars More: The Delphi Starter Kit

Several months after publishing
their excellent book, Delphi
Programming EXplorer, the
Coriolis Group released the
Delphi Starter Kit. The Kit is
the same book, with a CD-
ROM instead of a diskette. The
CD-ROM contains all the
diskette’s source code and utility
programs. The rest of the CD-
ROM is filled with a collection
of Delphi-related material of
wildly-varying — and generally
disappointing — quality. Buyers
may want to think twice before
paying a few dollars more for
the Kit.

When I reviewed Delphi
Programming EXplorer [in the
August 1995 issue of Delphi
Informant] I was genuinely
pleased with the job that Jeff
Duntemann, Jim Mischel, and
Don Taylor had done. The
book is excellent, presenting
Delphi in a lively and highly
readable manner. Source code
for the book’s examples is
included on a 3.5” diskette,
along with versions of
HelpGen’s help authoring utili-
ty and EarthTrek’s Delphi
Conversion Assistant for Visual
Basic source code conversion.

I hoped that the new Starter
Kit would build on the book’s
strong start. The Kit certainly
looks promising. The box lists
“powerful Delphi development
tools”, “special versions of
Delphi custom controls”, “tech-
nical tips”, and a “CD-ROM
Packed with Delphi
Development Projects”. Instead,
I found promotional offers,
VBXes, and buggy source code
written by amateurs. I even
found material that had noth-
OCTOBER 1995
ing at all to do with Delphi.
The CD-ROM is organized

into several directories. The first
one contains the same source
code as the book’s diskette, and
the HelpGen utility. The source
code files are not compressed.
However, if you want to com-
pile them, you’ll have to copy
them to your hard disk, since
Delphi will complain that it
can’t write its working files to
your CD-ROM drive.

Next is a copy of Adobe’s
Acrobat reader. You don’t need
it, since it also comes with
Delphi. The “Inform” directory
contains a copy of the premiere
issue of Delphi Informant maga-
zine, in Acrobat format. A sub-
directory contains all the source
code and resource files for that
issue, in their native formats.
There is also an Acrobat version
of some Delphi-related articles
from the June/July ‘95 issue of
the Coriolis Group’s PC
Techniques magazine. Unfortu-
nately, the source code is not
given separately. If you try to
copy it to the Clipboard,
Acrobat ignores the column for-
matting, giving you pureed text.
Using the Acrobat reader is very
slow, even on a beefy 486
DX50 with a graphics coproces-
sor and 2X CD-ROM drive.
Thumbing through hard copies
of the magazines at a bookstore
is definitely more fun.

A directory named “Demos”
contains demo versions of four
commercial Delphi tools. First
is the same EarthTrek Visual
Basic Conversion Assistant that
came on the original book’s
diskette. Next is the March ‘95
demonstration version of the
Component Toolbox 2.0,
Standard Edition, from
Gamesman, Inc. of Canada.
This consists of 21 assorted
VBX controls, without docu-
mentation. The demo program
could not find one of its
VBXes, and left the cursor the
wrong shape.

Then there is a Trial Edition
of Eschalon Setup 1.0, a utility
for installing applications. If
you want to use it, you must
register it. Finally, there is a beta
version of Shoreline’s VisualPros
widgets. Their documentation
says “Sorry if there doesn’t seem
to be much meat in this beta
release.” Some of the widgets
didn’t work well. Others needed
DLLs that they couldn’t find.

Rummaging around in the
“Controls” directory is like visit-
ing a flea market. It contains 28
subdirectories of various Delphi
controls, including some Delphi
DLLs, a pre-release version of a
report printer, a 3-D rendering
package that “requires a little
knowledge of Object Pascal to
be effective”, three different
support packages for
WINSOCK.DLL, and a crip-
pled version of TurboPower’s
Orpheus Data Entry VCLs.

The Orpheus set is the most
professional of the controls. It
includes the source code to the
demo, but not to the controls,
and the controls run only in the
Delphi IDE. The same trial
package can be downloaded
from their BBS, CompuServe,
or the Internet.

The quality of the rest of the
controls is much worse. Various
comments show that many of
these are first efforts at program-
ming in Delphi, and some are
first efforts in programming in
any language at all. Some come
with no source code. Others
have source code, but no project
files. Some have source code for
demo programs, but not for
their VCLs. Some don’t even
have demo programs. Many
contain un-needed backup and
temporary files. Some projects
generated compile-time errors.
Some of the programs com-
piled, but didn’t do what they
advertised. Some tried, but
crashed repeatedly. One even
crashed my system.

To sum up, the Coriolis
Group’s Delphi Starter Kit con-
tains the same book and source
code as their outstanding Delphi
Programming EXplorer on a CD-
ROM. If there is something else
listed here that you already
know you want, then the conve-
nience of getting it on a CD-
ROM may be worth the few
extra dollars. Otherwise, get the
diskette version of the book.
— Tim Feldman

Delphi Starter Kit
Coriolis Group Books,
7339 East Acoma Drive,
Suite 7, Scottsdale, AZ 85260;
(800) 410-0192, or
(602) 483-0192.
ISBN: 1-883577-55-1
Price: US$44.99
627 pages, CD-ROM
Delphi INFORMANT ▲ 48

	Table of Contents
	Editorial
	Delphi Tools
	DFL Software Releases Light Lib Images VCL for Delphi
	Borland and Brainstorm Technologies Ship Delphi/Link for Lotus Notes
	Add Graphics to Delphi with ProEssentials
	ProtoView Visual Help Builder for Delphi
	PowerTCP for Delphi Adds SMTP and POP3
	Diamond Head Software Launches ImageBASIC for Delphi

	Newsline
	Delphi32 Previewed at Sixth Annual Borland Conference
	ICG Announces Delphi Informant on CD-ROM
	BDC 1996: Wetsel Keynote Sets New Tone for Borland
	Borland Launches Windows 95 Web Site

	Questions and Answers
	Why Use SQL?
	A SQL Overview
	Introducing Windows Interactive SQL
	Viewing Metadata
	Querying with the SELECT Statement
	Using Other DML Statements
	Using SQL with Delphi
	Creating a Simple Interactive SQL Application
	The Trouble with Open on E:EDatabaseError do
	The Database Component
	Conclusion

	Tables Under Construction
	The FieldDefs Property
	Tables on the Run
	Adding Indexes
	A Practical Example
	Conclusion

	Database Apps: Part I
	Create a Table
	Create an Alias
	Enter Some Data
	Configuring Delphi
	The Application Expert
	The Object Inspector
	Making the Form Data Aware
	Activate Your Objects
	A Final Touch
	Conclusion

	Delphi32: A First Look
	Two Steps to 32-Bitness
	Win32 Facelift
	Sidebar 1 - Key Enhancements in Delphi32

	Beyond the 64K Barrier
	Three New Types
	Multithreading
	Optimized Code without the Work

	Strings: Part III
	Putting StripFirstWord to Work
	Limiting the Length of Strings
	Working with Text Files
	Conclusion
	Listing One — The TESTSTR program

	At Your Fingertips
	How can I program Jto act like Fwhen pressed?
	How can I reduce the size of my Delphi executable?
	How can I suppress the dialog boxes that appear when using packages such as Crystal Reports?

	Why Do Programmers Love Delphi?
	What’s Going On?
	Meeting the Challenge
	Into the Fray
	It’s the Tools
	Must Be the Language
	It’s the Environment
	May Be Habit Forming

	See-Through Images
	Component Create
	Creating Components
	Completing Components
	Other Considerations
	Conclusion

	TextFile
	For a Few Dollars More: The Delphi Starter Kit

